Solid Mechanics and Vehicle Conceptual Design

Static test technology for C919 full-scale aircraft structure

  • ZHENG Jianjun ,
  • TANG Jiyun ,
  • WANG Binwen
Expand
  • Aviation Technology Key Laboratory of Full Scale Aircraft Structure Static and Fatigue Test, Aircraft Strength Research Institute of China, Xi'an 710065, China

Received date: 2018-05-24

  Revised date: 2018-09-07

  Online published: 2018-10-19

Abstract

This paper presents the purpose of and task requirements for the full-scale aircraft static test of the C919 large civil aircraft. The characteristics and difficulties of the test were analysed. The overall technical implementation plan was drawn from aircraft constraint, test loading and control, measurement and monitoring, damage detection and condition monitoring. The verification results show that the test system is reliable and the technical implementation plan meets the task requirements. A number of innovative techniques are put forward. First, in the comprehensive loading platform design technology, multi-subsystem integration is optimized accelerating the test preparation process and reducing the risk during test preparation. Second, the constraint error transfer control technology transfers the constraint position error to the non-key assessment position, improving the test accuracy in the key assessment area. Third, regarding the two-way loading technology in the fuselage double floors, the loading has been optimized and the loading accuracy of the local loads has been improved. The technical achievements of this study offer a great reference value for future aircraft tests.

Cite this article

ZHENG Jianjun , TANG Jiyun , WANG Binwen . Static test technology for C919 full-scale aircraft structure[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019 , 40(1) : 522364 -522364 . DOI: 10.7527/S1000-6893.2018.22364

References

[1] 中国民用航空局. 中国民用航空规章-第25部-运输类飞机适航标准:CCAR-25-R4[S]. 北京:中国民用航空局政策法规司, 2016. China Civil Aviation Administration. China civil aviation regulations-Part 25-Airworthiness standards for transport aircraft:CCAR-25-R4[S]. Beijing:Policy and Regulation Department, China Civil Aviation Administration, 2016(in Chinese).
[2] 孙侠生, 齐丕骞. 民用飞机结构强度刚度设计与验证指南[M]. 北京:航空工业出版社, 2012:374. SUN X S, QI P Q. Design and verification guide of strength and stiffness in civil aircraft structure[M]. Beijing:Aviation Industry Press, 2012:374(in Chinese).
[3] 强宝平. 全尺寸飞机结构试验技术[J]. 航空科学技术, 2012(6):10-13. QIANG B P. Evaluation of full scale aircraft structure strength test technology[J]. Aeronautical Science & Technology, 2012(6):10-13(in Chinese).
[4] 中国飞机强度研究所. 航空结构强度技术[M]. 北京:航空工业出版社, 2013:357. AVIC Aircraft Strength Research Institute. Aircraft stru-cture strength technology[M]. Beijing:Aviation Industry Press, 2013:357(in Chinese).
[5] LUKE G, VAN BLARICUM T. The use of bonded rubber pads for the application of loads for structural testing of the P-3 Orion leading edge:ADA329920[R]. Ottawa:Laboratory AAaMR, 1997.
[6] 卓轶, 吕媛波, 张文东. 飞机结构强度试验中拉压垫加载技术研究[J]. 科学技术与工程, 2016, 16(2):244-248. ZHUO Y, LV Y B, ZHANG W D. The research of tension/compression pad load technique in structure strength test[J]. Science Technology and Engineering, 2016, 16(2):244-248(in Chinese).
[7] 巴塔西, 法洋洋, 于哲峰, 等. 基于CATIA的飞机结构试验加载杠杆系统参数化建模方法[J]. 实验室研究与探索, 2012(2):54-58. BA T X, FA Y Y, YU Z F, et al. Parameterized modeling for whiffletree loading system in aircraft structure test based on CATIA[J]. Research and Exploration in Laboratory, 2012(2):54-58(in Chinese).
[8] KWEDER J, PANTHER C C, SMITH J E. Applications of circulation control, yesterday and today[J]. International Journal of Engineering, 2010, 4(5):411-429.
[9] SANAYEI M, ONIPEDE O. Damage assessment of structures using static test data[J]. AIAA Journal, 1991, 29(7):1174-1179.
[10] 吴光辉, 刘虎. 大型客机数字化设计支持体系框架[J]. 航空学报, 2008, 29(5):1386-1394. WU G H, LIU H. Framework of digital design support system-of-systems for large airlines[J]. Acta Aeronautica et Astronautic Sinica, 2008, 29(5):1386-1394(in Chinese).
[11] 刘冰, 夏峰, 张建峰, 等. 全尺寸飞机静强度试验扣重技术研究[C]//第六届中国航空学会青年科技论坛论文集(上册). 北京:航空工业出版社, 2014:425-429. LIU B, XIA F, ZHANG J F, et al. Research of weight deduct of static test ob full scale aircraft[C]//6th CSAA S & T Technique Youth. Beijing:Aviation Industry Press, 2014:425-429(in Chinese).
[12] 王正平, 韩鸿源. 飞机结构试验载荷演算方法研究[J]. 西北工业大学学报, 1999, 17(4):649-652. WANG Z P, HAN H Y. A method for load calculation in aircraft structure test[J]. Journal of Northwestern Polytechnical University, 1999, 17(4):649-652(in Chinese).
[13] ZHAO H W, DUAN S H, FENG J M. A preliminary study on application of closed-loop cross compensation control in accelerated fatigue testing[C]//33rd AIAA Aer-odynamic Measurement Technology and Ground Testing Conference. Reston, VA:AIAA, 2017.
[14] WU J, YUAN S, ZHOU G, et al. Design and evaluation of a wireless sensor network based aircraft strength testing system[J]. Sensors, 2009, 9(6):4195-4210.
[15] ZE X. Digital simulation of full scale static test of aircraft[J]. Chinese Journal of Aeronautics, 2005, 18(2):138-141.
[16] BATES D, SMITH G, LU D, et al. Rapid thermal non-destructive testing of aircraft components[J]. Composites Part B:Engineering, 2000, 31(3):175-185.
[17] 马保全, 周正干. 航空航天复合材料结构非接触无损检测技术的进展及发展趋势[J]. 航空学报, 2014, 35(7):1787-1803. MA B Q, ZHOU Z G. Progress and development trends of composite structure evaluation using noncontact nondestructive testing techniques in aviation and aerospace industries[J]. Acta Aeronautica et Astronautic Sinica, 2014, 35(7):1787-1803(in Chinese).
[18] BOLLER C. Next generation structural health monitoring and its integration into aircraft design[J]. International Journal of Systems Science, 2000, 31(11):1333-1349.
[19] ZOU Y, TONG L, STEVEN G P. Vibration-based model-dependent damage (delamination) identification and health monitoring for composite structures-A review[J]. Journal of Sound and Vibration, 2000, 230(2):357-378.
[20] 尹娟. 民用飞机研制中设计质量管理的研究与探讨[J]. 民用飞机设计与研究, 2012(3):70-72. YIN J. Research and discussion on design quality management of the civil aircraft development[J]. Civil Aircraft Design & Research, 2012(3):70-72(in Chinese).
[21] OSTERGAARD M G, IBBOTSON A R, LE ROUX O, et al. Virtual testing of aircraft structures[J]. CEAS Aeronautical Journal, 2011, 1(1-4):83-103.
[22] 刘亚龙, 王生楠, 刘海峰, 等. 基于MSC/PATRAN的飞机结构强度静力试验数据实时跟踪与处理系统开发[J]. 航空学报, 2007, 28(1):84-89. LIU Y L, WANG S N, LIU H F, et al. Development of test data tracking, analyzing and processing system for aircraft structural strength based on MSC/PATRAN platform[J]. Acta Aeronautica et Astronautic Sinica, 2007, 28(1):84-89(in Chinese).
[23] 王高利, 唐吉运. 全尺寸飞机结构试验约束点载荷误差分析及优化[J]. 工程与试验, 2014, 54(2):42-46. WANG G L, TANG J Y. Error analysis & optimization for constraint point load of full scale aircraft test[J]. Engineering & Test, 2014, 54(2):42-46(in Chinese).
[24] 刘玮, 滕青, 刘冰. 基于地板结构的机身双层双向加载技术[J]. 航空学报, 2018, 39(5):221712. LIU W, TENG Q, LIU B. Double deck bi-directional loading technology based on airliner cabin floor structure[J]. Acta Aeronautica et Astronautic Sinica, 2018, 39(5):221712(in Chinese).
[25] 杜星, 王鑫涛. 阀控非对称缸单向加载方法研究[J]. 机床与液压, 2017, 45(22):105-108. DU X, WANG X T. Unidirectional loading method for valve controlled asymmetric cylinder[J]. Machine Tool & Hydraulics, 2017, 45(22):105-108(in Chinese).
[26] 詹绍正, 宁宁, 杨鹏飞, 等. 复合材料夹芯结构的数字化敲击检测技术研究[J]. 航空制造技术, 2018, 61(3):90-94. ZHAN S Z, NING N, YANG P F, et al. Composite sandwich structure digital tap test technology research[J]. Aeronautical Manufacturing Technology, 2018, 61(3):90-94(in Chinese).
[27] 郭方宇, 袁慎芳, 鲍峤. 基于导波的飞机结构腐蚀损伤监测研究[J]. 航空制造技术, 2018, 61(7):70-76. GUO F Y, YUAN S F, BAO Q. Research on corrosion damage monitoring of aircraft structure based on guided wave[J]. Aeronautical Manufacturing Technology, 2018, 61(7):70-76(in Chinese).
[28] 孙侠生, 肖迎春. 飞机结构健康监测技术的机遇与挑战[J]. 航空学报, 2014, 35(12):3199-3212. SUN X S, XIAO Y C. Opportunities and challenges of aircraft structural health monitoring[J]. Acta Aeronautica et Astronautic Sinica, 2014, 35(12):3199-3212(in Chinese).
[29] 中国民用航空局. 航空器型号合格审定程序:AP-21-AA-2011-03-R4[S]. 北京:中国民用航空局航空器适航审定司, 2011. China Civil Aviation Administration. Aircraft type certification procedure:AP-21-AA-2011-03-R4[S]. Beijing:Air-craft Airworthiness Certification Division, China Civil Aviation Administration, 2011(in Chinese).
Outlines

/