Material Engineering and Mechanical Manufacturing

A review of parallel kinematic mechanism technology for aircraft assembly

  • PAN Guowei ,
  • CHEN Wenliang ,
  • WANG Min
Expand
  • College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2018-07-28

  Revised date: 2018-08-20

  Online published: 2018-10-10

Supported by

Funding of Jiangsu Innovation Program for Graduate Education (KYLX15_0299)

Abstract

The closed-form chain structure provides the parallel mechanism with good precision, stiffness and dynamic performance, meeting the precision and efficiency requirements for aircraft assembly. Therefore, the automatic assembly equipment with parallel kinematic mechanism as the main component is more and more applied to aircraft assembly. Firstly, the current situation of parallel mechanism and the new characteristics of aircraft assembly are summarized, analyzing the advantages of parallel kinematic mechanism in aircraft assembly. Secondly, the domestic and foreign research on parallel kinematic mechanism in aircraft assembly is summarized from the component parts manufacture and pose/position adjustment. Thirdly, the main research problems of parallel kinematic mechanism are discussed. The key technologies of parallel mechanism in aircraft assembly are analyzed in detail from four aspects, including reconfigurable design, performance evaluation and optimization design, precision modeling and force/position coordinative control. Finally, the future development direction and opportunities of parallel mechanism in aircraft assembly are prospected.

Cite this article

PAN Guowei , CHEN Wenliang , WANG Min . A review of parallel kinematic mechanism technology for aircraft assembly[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019 , 40(1) : 522572 -522572 . DOI: 10.7527/S1000-6893.2018.22572

References

[1] 范玉青, 梅中义, 陶剑. 大型飞机数字化制造工程[M]. 北京:航空工业出版社, 2011:26-35. FAN Y Q, MEI Z Y, TAO J. Digital manufacturing engineering of large aircraft[M]. Beijing:Aviation Industry Press, 2011:26-35(in Chinese).
[2] 许国康. 大型飞机自动化装配技术[J]. 航空学报, 2008, 29(3):734-740. XU G K. Automatic assembly technology for large aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(3):734-740(in Chinese).
[3] 朱永国, 黄翔, 宋利康, 等. 基于理想驱动力的中机身调姿多项式轨迹规划[J]. 计算机集成制造系统, 2015, 21(7):1790-1796. ZHU Y G, HUANG X, SONG L K, et al. Polynomial tra-jectory planning method based on ideal drive forces for aircraft fuselage pose adjustment[J]. Computer Integrated Manufacturing Systems, 2015, 21(7):1790-1796(in Chinese).
[4] JIN Y, CHANAL H, PACCOT F. Parallel robots[M]. London:Springer, 2015:5-8.
[5] 汪满新, 黄田. 1T2R3自由度并联机构拓扑结构综合[J]. 机械工程学报, 2015, 51(17):36-41. WANG M X, HUANG T. Type synthesis of 1T2R 3-DOF parallel mechanism[J]. Journal of Mechanical Engineering, 2015, 51(17):36-41(in Chinese).
[6] XIE F, LIU X J, YOU Z, et al. Type synthesis of 2T1R-type parallel kinematic mechanisms and the application in manufacturing[J]. Robotics & Computer Integrated Manufacturing, 2014, 30(1):1-10.
[7] MERLET J P. Parallel robots (second edition)[M]. London:Springer, 2006:3-6.
[8] 杜善义, 关志东. 我国大型客机先进复合材料技术应对策略思考[J]. 复合材料学报, 2008, 25(1):1-10. DU S Y, GUANG Z D. Strategic considerations for de velopment of advanced composite technology for large commercial aircraft in China[J]. Acta Materiae Compositae Sinica, 2008, 25(1):1-10(in Chinese).
[9] ZOU J. Indoor global positioning measurement system application for the aircraft flexible joint assembly[J]. Journal of General Microbiology, 2010, 74(1):61-69.
[10] RAMIREZ J, WOLLNACK J. Flexible automated assembly systems for large CFRP-structures[J]. Procedia Technology, 2014, 15:447-455.
[11] 刘辛军, 谢福贵, 汪劲松. 当前中国机构学面临的机遇[J]. 机械工程学报, 2015, 51(13):2-12. LIU X J, XIE F G, WANG J S. Current opportunities in the field of mechanisms in China[J]. Journal of Mechanical Engineering, 2015, 51(13):2-12(in Chinese).
[12] BI Z M, LANG S Y T, VERNER M, et al. Development of reconfigurable machines[J]. International Journal of Advanced Manufacturing Technology, 2008, 39(11):1227-1251.
[13] NEUMANN K E. Robot:US, 4732525[P]. 1988-03-22.
[14] NEUMANN K E. Tricept application[C]//The 3rd Chemnitz Parallel Kinematics Seminar. Zwickau:SAE International, 2002:1121-1126
[15] NEUMANN K E. The key to aerospace automation[C]//Aerospace Manufacturing and Automated Fastening Conference and Exhibition. Toulouse:SAE International, 2006:12-23.
[16] 王友渔, 黄田, CHETWYND D G, et al. Tricept机械手静刚度解析建模方法[J]. 机械工程学报, 2008, 44(8):13-19. WANG Y Y, HUANG T, CHETWYND D G, et al. Analytical method for stiffness modeling of the Tricept robot[J]. Journal of Mechanical Engineering, 2008, 44(8):13-19(in Chinese).
[17] NEUMANN K E. Parallel kinematical machine:WO, 2006054935[P]. 2006-05-26.
[18] NEUMANN K E, BOLEN A. Self-adapting parallel kinematic machines for large wing and fuselage assembly[C]//SAE 2010 Aerospace Manufacturing and Automated Fastening Conference & Exhibition. Kansas:SAE International, 2010:89-101.
[19] 祁萌, 李晓红, 高彬彬. 国外航空领域机器人技术发展现状与趋势分析[J]. 航空制造技术, 2018, 61(12):97-101. QI M, LI X H, GAO B B. Development status and trend analysis of robot technology in foreign aviation field[J]. Aeronautical Manufacturing Technology, 2018, 61(12):97-101(in Chinese).
[20] OLAZAGOTIA J L, WYATT S. New PKM Tricept T9000 and its application to flexible manufacturing at aerospace industry[C]//Aerospace Technology Conference and Exposition. 2007:94-106.
[21] 汪满新. 一种五自由度混联机器人静柔度建模与设计方法研究[D]. 天津:天津大学, 2015:1-4. WANG M X. Investigation into compliance modeling and design methodology of a five degree of freedom hybrid robot[D]. Tianjin:Tianjin University, 2015:1-4(in Chinese).
[22] 黄田, 李曚, 张大卫, 等. 四自由度混联机器人:CN 1439492A[P]. 2003-03-06. HUANG T, LI M, ZHANG D W, et al. A 4-DOF hybrid robot:CN 1439492A[P]. 2003-03-06(in Chinese).
[23] 黄田, 李曚, 李占贤, 等. 非对称空间5自由度混联机器人:CN1524662[P]. 2004-09-01. HUANG T, LI M, LI Z X, et al. A 5-DOF hybrid robot:CN 1524662A[P]. 2004-09-01(in Chinese).
[24] 黄田, 董成林, 刘海涛, 等. 一种含多轴转动支架的五自由度混联机器人:CN 104985596A[P]. 2015-07-09. HUANG T, DONG C L, LIU H T, et al. Five-degree-of-freedom parallel robot with multi-shaft rotary brackets:CN 104985596A[P]. 2015-07-09(in Chinese).
[25] HENNES N. Ecospeed:An innovative machining concept for high performance 5-axis-machining of large structural component in aircraft engineering[C]//The 3rd Chemnitz Parallel Kinematic Seminar. Zwickau:SAE International, 2002:763-774.
[26] JIN Y, KONG X, HIGGINS C, et al. Kinematic design of a new parallel kinematic machine for aircraft wing assembly[C]//IEEE International Conference on Industrial Informatics. Piscataway, NJ:IEEE Press, 2012:669-674.
[27] REID E. Development of a mobile drilling and fastening system based on a PKM robotic platform[C]//SAE 2015 AeroTech Congress & Exhibition. Seattle:SAE International, 2015:2059-2070.
[28] 王珉, 陈文亮, 张得礼, 等. 飞机轻型自动化制孔系统及关键技术[J]. 航空制造技术, 2012(19):40-43. WANG M, CHEN W L, ZHANG D L, et al. Light weight automatic drilling system and key technology for aircraft[J]. Aeronautical Manufacturing Technology, 2012(19):40-43(in Chinese).
[29] 王珉, 曾长, 陈文亮, 等. 一种用于飞机装配的八足并联自主移动机构[J]. 机械工程学报, 2013, 49(15):49-54. WANG M, ZHEN C, CHEN W L, et al. A kind of parallel mechanism of autonomous mobile for aircraft assembly[J]. Journal of Mechanical Engineering, 2013, 49(15):49-54(in Chinese).
[30] 王珉, 王谢苗, 陈文亮, 等. 具有变胞功能的自主移动制孔机构[J]. 北京航空航天大学学报, 2015, 41(3):398-404. WANG M, WANG X M, CHEN W L, et al. Autonomous mobile drilling mechanism with metamorphic function[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(3):398-404(in Chinese).
[31] 韩锋, 田威, 廖文和, 等. 基于并联机构的轻型自主爬行钻铆系统法向调姿算法[J]. 航空学报, 2015, 36(6):2083-2090. HANG F, TIAN W, LIAO W H, et al. Normal posture adjustment algorithm for lightweight auto-crawling drilling & riveting system based on parallel mechanism[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(6):2083-2090(in Chinese).
[32] 刘冬, 赵现朝, 齐臣坤. 行走、定位一体化飞机制孔六足机器人研究[J]. 机械设计与研究, 2012, 28(6):52-55. LIU D, ZHAO X C, QI C K. Research on walking-positioning integrated hexapod robot for drilling aircraft component[J]. Machine Design and Research, 2012, 28(6):52-55(in Chinese).
[33] BONE G M, CAPSON D. Vision-guided fixtureless assembly of automotive components[J]. Robotics and Computer-Integrated Manufacturing, 2003, 19(2):79-87.
[34] MCKEOWN C, WEBB P. A reactive reconfigurable tool for aerospace structures[J]. Assembly Automation, 2011, 31(4):334-343.
[35] 王亮, 李东升. 飞机数字化装配柔性工装技术体系研究[J]. 航空制造技术, 2012, 403(7):34-39. WANG L, LI D S. Flexible tooling technology system for aircraft digital assembly[J]. Aeronautical Manufacturing Technology, 2012, 403(7):34-39(in Chinese).
[36] 马政伟, 李卫东, 万敏, 等. 飞机侧壁部件装配调姿机构的设计与分析[J]. 北京航空航天大学学报, 2014, 40(2):280-284. MA Z W, LI W D, WAN M, et al. Design and analysis of flexible fixture for aircraft side panels[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(2):280-284(in Chinese).
[37] SCHWAKE K, WULFS J. Robot-based system for handling of aircraft shell parts[J]. Procedia CIRP, 2014, 23:104-109.
[38] 姜丽萍. 基于模型定义的中机身装配关键技术研究[D]. 南京:南京航空航天大学, 2016:50-56. JIANG L P. Research on key technology for fuselage automatic assembly based on model definition[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2016:50-56(in Chinese).
[39] 邱宝贵, 蒋君侠, 毕运波, 等. 大型飞机机身调姿与对接试验系统[J]. 航空学报, 2011, 32(5):908-919. QIU B G, JIANG J X, BI Y B, et al. Posture alignment and joining test system for large aircraft fuselages[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(5):908-919(in Chinese).
[40] ZHU Y G, HUANG X, LI S G. A novel six degrees-of-freedom parallel manipulator for aircraft fuselage assemble and its trajectory planning[J]. Journal of the Chinese Institute of Engineers, 2015, 38(7):928-937.
[41] ESSER M, VETTE M. Reconfigurable handling systems as an enabler for large components in mass customized production[J]. Journal of Intelligent Manufacturing, 2013, 24(5):977-990.
[42] LÖCHTE C, DIETRICH F, RAATZ A. A parallel kinematic concept targeting at more accurate assembly of aircraft sections[M]. Berlin:Springer, 2011:142-151.
[43] PRAUSE I, MBAREK T, CORVES B. Increasing the stiffness of a 3-PUU parallel kinematic positioning device for high payloads by modifying the leg configuration[C]//IFToMM Workshop on Fundamental Issues and Future Research Directions for Parallel Mechanisms and Manipulators. Tianjin:IFToMM, 2014:15-24.
[44] KIHLMAN H. Affordable automation for airframe assembly:developing of key enabling technologies[D]. Linköping:Linköping University, 2005:55-89.
[45] 郑联语, 刘清军, 张宏博, 等. 基于综合工装的盒式连接装配型架快速配置方法[J]. 计算机集成制造系统, 2014, 20(10):2426-2639. ZHEGN L Y, LIU Q J, ZHANG H B, et al. Papid configuration for box-joint assembly jigs based on composite tooling[J]. Computer Integrated Manufacturing Systems, 2014, 20(10):2426-2639(in Chinese).
[46] KIHLMAN H. Flexapods-flexible tooling at SAAB for building the NEURON aircraft[C]//SAE 2010 Aerospace Manufacturing and Automated Fastening Conference & Exhibition. Kansas:SAE International, 2010:59-74.
[47] DELFOI P H, OSSBAHR G, TOMLINSON D. Modular and configurable steel structure for assembly fixturest[C]//SAE 2010 Aerospace Manufacturing and Automated Fastening Conference & Exhibition. Kansas:SAE International, 2010:458-466.
[48] MULLER R, BRECHER C, CORVES B, et al. Self-optimization as an enabler for flexible and reconfigurable assembly systems[C]//International Conference on Intelligent Robotics and Applications. Berlin:Springer-Verlag, 2011:179-188.
[49] XIONG L, MOLFINO R, ZOPPI M. Fixture layout optimization for flexible aerospace parts based on self-reconfigurable swarm intelligent fixture system[J]. International Journal of Advanced Manufacturing Technology, 2013, 66(12):1305-1313.
[50] MANNHEIM T, RIEDEL M, HUSING M, et al. A new way of grasping:PARAGRIP-the fusion of gripper and robot[M]. London:Springer, 2013:433-464.
[51] MOLFINO R, ZOPPI M, ZLATANOV D. Reconfigurable swarm fixtures[C]//Asme/iftomm International Conference on Reconfigurable Mechanisms and Robots. Piscataway, NJ:IEEE Press, 2009:730-735.
[52] SAGAR K, LEONARDO L D, MOLFINO R, et al. The SwarmItFix pilot[J]. Procedia Manufacturing, 2017, 11:413-422.
[53] RAMIREZ J, WOLLNACK J. Flexible automated assembly systems for large CFRP-structures[J]. Procedia Technology, 2014, 15:447-455.
[54] SCHMITT R, CORVES B, LOOSEN P, et al. Cognition-enhanced, self-optimizing assembly systems[M]. London:Springer, 2017:877-984.
[55] SUN T, SONG Y M, DONG G, et al. Optimal design of a parallel mechanism with three rotational degrees of freedom[J]. Robotics & Computer Integrated Manufacturing, 2012, 28(4):500-508.
[56] 刘雄伟, 郑亚青, 林麒. 应用于飞行器风洞试验的绳牵引并联机构技术综述[J]. 航空学报, 2004, 25(4):393-400. LIU X W, ZHENG Y Q, LIN Q. Overview of wire-driven parallel kinematic manipulators for aircraft wind tunnels[J]. Acta Aeronautica et Astronautica Sinica, 2004, 25(4):393-400(in Chinese).
[57] IZARD J B, DUBOR A, HERVE P E, et al. On the improvements of a cable-driven parallel robot for achieving additive manufacturing for construction[M]. Cham:Springer, 2018:29-41.
[58] 黄田, 李曚, 吴孟丽, 等. 可重构PKM模块的选型原则——理论与实践[J]. 机械工程学报, 2005, 41(8):36-41. HUANG T, LI M, WU M L, et al. Criteria for conceptual design of reconfigurable PKM modules-theory and application[J]. Journal of Mechanical Engineering, 2005, 41(8):36-41(in Chinese).
[59] MULLER R, ESSER M, MBAREK T, et al. Development of modular low cost automation systems for aircraft assembly[C]//Aerospace Technology Conference and Exposition. 2011:26-41.
[60] SCHNEIDER T. Innovative approach for modular and flexible positioning systems for large aircraft Assembly[C]//SAE 2015 AeroTech Congress & Exhibition. Seattle:SAE International, 2015:2503-2508.
[61] JEFFERSON T, CROSSLEY R, SMITH T, et al. Review of reconfigurable assembly systems technologies for cost effective wing structure assembly[C]//SAE 2013 AeroTech Congress & Exhibition. Quebec:SAE International, 2013:2336-2349.
[62] HERRERO S, MANNHEIM T, PRAUSE I, et al. Enhancing the useful workspace of a reconfigurable parallel manipulator by grasp point optimization[J]. Robotics and Computer Integrated Manufacturing, 2015, 31:51-60.
[63] 吴腾, 张武翔, 丁希仑. 一种新型并联变胞机构的设计与分析[J]. 机械工程学报, 2015,51(7):30-37. WU T, ZHAGN W X, DING X L. Design and analysis of a novel parallel metamorphic mechanism[J]. Journal of Mechanical Engineering, 2015, 51(7):30-37(in Chinese).
[64] 叶伟, 方跃法, 郭盛, 等. 基于运动限定机构的可重构并联机构设计[J]. 机械工程学报, 2015,51(13):137-143. YE W, FANG Y F, GUO S, et al. Design of reconfigurable parallel mechanisms with discontinuously movable mechanism[J]. Journal of Mechanical Engineering, 2015,51(13):137-143(in Chinese).
[65] 戴建生. 机构学与旋量理论的历史渊源以及有限位移旋量的发展[J]. 机械工程学报, 2015, 51(13):13-26. DAI J S. Historical relation between mechanisms and screw theory and the development of finite displacement screws[J]. Journal of Mechanical Engineering, 2015, 51(13):13-26(in Chinese).
[66] 黄真, 赵永生, 赵铁石. 高等空间机构学[M]. 北京:高等教育出版社, 2014:115-127. HUANG Z, ZHAO Y S, ZHAO T S. Advanced spatical mechanism[M]. Beijing:Higher Education Press, 2014:115-127(in Chinese).
[67] 史巧硕, 马岱, 高峰, 等. 基于GF集的并联机构末端运动特征分析方法[J]. 南开大学学报(自然科学版), 2008(5):21-26. SHI Q S, MA D, GAO F, et al. Method for kinematic characteristics analysis of the end-effector of parallel mechanisms based on GF set[J]. Acta Scientiarum Naturalium Universitatis Nankaiensis, 2008(5):21-26(in Chinese).
[68] MURRAY R M, SASTRY S S, LI Z. A mathematical introduction to robotic manipulation[M]. 1994:19-50.
[69] 杨廷力, 刘安心, 罗玉峰, 等. 机器人机构结构综合方法的基本思想、特点及其发展趋势[J]. 机械工程学报, 2010, 46(9):1-11. YANG T L, LIU A X, LUO Y F, et al. Basic principles, main characteristics and development tendency of methods for robot mechanism structure synthesis[J]. Journal of Mechanical Engineering, 2010, 46(9):1-11(in Chinese).
[70] JIN Y, ABELLA R, ARES E, et al. Modeling and digital tool development of a new similarity metric for aerospace production[J]. International Journal of Advanced Manufacturing Technology, 2013, 69(1-4):777-795.
[71] 靳江艳, 黄翔, 卢鹄, 等. 飞机设计域向工装域映射机理研究[J]. 航空学报, 2012, 33(12):2330-2337. JIN J Y, HUANG X, LU H, et al. Research on mapping mechanism from product design to tooling concept design for aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(12):2330-2337(in Chinese).
[72] 陈祥, 谢福贵, 刘辛军. 并联机构中运动/力传递功率最大值的评价[J]. 机械工程学报, 2014, 50(3):1-9. CHEN X, XIE F G, LIU X J. Evaluation of the maximum value of motion/force transmission power in parallel manipulators[J]. Journal of Mechanical Engineering, 2014, 50(3):1-9(in Chinese).
[73] 盖宇春, 朱伟东, 柯映林. 三坐标定位器部件刚度配置方法[J]. 浙江大学学报(工学版), 2014, 48(8):1434-1441. GAI Y C, ZHU W D, KE Y L. Stiffness parameter configuration of Cartesian positioner components[J]. Journal of Zhejiang University (Engineering Science), 2014, 48(8):1434-1441(in Chinese).
[74] 张洪双, 王青, 柯映林, 等. 基于并联机构调姿的大部件支撑点优选[J]. 计算机集成制造系统, 2014, 20(10):2419-2425. ZHANG H S, WANG Q, KE Y L, et al. Supporting point optimal selection of big part based on parallel mechanism align-positioning[J]. Computer Integrated Manufacturing Systems, 2014, 20(10):2419-2425(in Chinese).
[75] 孙涛. 少自由度并联机构性能评价指标体系研究[D]. 天津:天津大学, 2012:15-19. SUN T. Performance evaluation index framework of lower mobility parallel manipulators[D]. Tianjin:Tianjin University, 2012:15-19(in Chinese).
[76] CIRILLO A, CIRILLO P, MARIA G D, et al. Optimal custom design of both symmetric and unsymmetrical hexapod robots for aeronautics applications[J]. Robotics and Computer Integrated Manufacturing, 2017, 44:1-16.
[77] JIN Y, BI Z, HIGGINS C, et al. Optimal design of a new parallel kinematic machine for large volume machining[C]//DAI J S, ZOPPI M, KONG X W. Advances in Reconfigurable Mechanisms and Robots I. London:Springer, 2012:343-354.
[78] JAMSHIDI J, MAROPOULOS P G. Methodology for high accuracy installation of sustainable jigs and fixtures[M]. Berlin:Springer, 2011:149-155.
[79] 洪振宇, 梅江平, 赵学满, 等. 可重构混联机械手-TriVariant的误差建模与灵敏度分析[J]. 机械工程学报, 2006, 42(12):65-69. HONG Z Y, MEI J P, ZHAO X M, et al. Error modeling and sensitivity analysis of reconfigurable hybrid robot module TriVariant[J]. Journal of Mechanical Engineering, 2006, 42(12):65-69(in Chinese).
[80] 郭志敏, 蒋君侠, 柯映林. 基于POGO柱三点支撑的飞机大部件调姿方法[J]. 航空学报, 2009, 30(7):1319-1324. GUO Z M, JIANG J X, KE Y L. Posture alignment for large aircraft parts based on three POGO sticks distributed support[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(7):1319-1324(in Chinese).
[81] 朱永国, 黄翔, 方伟, 等. 机身自动调姿方法及误差分析[J]. 南京航空航天大学学报, 2011, 43(2):229-234. ZHU Y G, HUANG X, FANG W, et al. Fuselage automatic position and pose adjustment method and its error analysis[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2011, 43(2):229-234(in Chinese).
[82] GERHARD M, TAOUFIK M, NIBAT B. High precision positioning system for aircraft structural[C]//15th International Conference on Experimental Mechanics. Porto:ICEM15, 2012:1-14.
[83] ZHAO Y, JIN Y, ZHANG J. Kinetostatic modeling and analysis of an exechon parallel kinematic machine(PKM) module[J]. Chinese Journal of Mechanical Engineering, 2016, 29(1):33-44.
[84] 陈根良. 操作机构尺寸与变形误差传递的统一建模方法研究[D]. 上海:上海交通大学, 2014:3-17. CHEN G L. A unified error transmission model of robot manipulators considering both kinematic and deformation errors[D]. Shanghai:Shanghai Jiao Tong University, 2014:3-17(in Chinese).
[85] SCHROER K, ALBRIGHT S, GRETHLEIN M. Complete, minimal and model continuous kinematic models for robot calibration[J]. Robotics and Computer-Integrated Manufacturing, 1997, 13(1):73-85.
[86] MBAREK T, MEISSNER A, BIYIKLIOGLU N. Positioning system for the aircraft structural assembly[J]. SAE International Journal of Aerospace, 2011, 4(2):1038-1047.
[87] STOLT A, LINDEROTH M, ROBERTSSON A, et al. Force controlled assembly of flexible aircraft structure[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ:IEEE Press, 2013:6027-6032.
[88] 罗中海, 孟祥磊, 巴晓甫, 等. 飞机大部件调姿平台力位混合控制系统设计[J]. 浙江大学学报(工学版), 2015, 49(2):265-274. LUO Z H, MENG X L, BA X F, et al. Design on hybrid force position control of large components posture alignment platform[J]. Journal of Zhejiang University (Engineering Science), 2015, 49(2):265-274(in Chinese).
[89] KE W, DU F, ZHANG X. Algorithm and experiments of six-dimensional force/torque dynamic measurements based on a Stewart platform[J]. Chinese Journal of Aeronautics, 2016, 29(6):1840-1851.
[90] FANG Q, CHEN W, ZHAO A, et al. Control system designing for correcting wing-fuselage assembly deformation of a large aircraft[J]. Assembly Automation, 2017, 37(1):22-33.
[91] BERTELSMEIER F, DETERT T, UBELHOR T, et al. Cooperating robot force control for positioning and un-twisting of thin walled components[J]. Advances in Ro-botics & Automation, 2017, 6(3):1-7.
[92] ERDEM I, HELGOSSON P, KIHLMAN H. Development of automated flexible tooling as enabler in wing box assembly[J]. Procedia CIRP, 2016, 44:233-238.
Outlines

/