[1] 范玉青, 梅中义, 陶剑. 大型飞机数字化制造工程[M]. 北京:航空工业出版社, 2011:26-35. FAN Y Q, MEI Z Y, TAO J. Digital manufacturing engineering of large aircraft[M]. Beijing:Aviation Industry Press, 2011:26-35(in Chinese).
[2] 许国康. 大型飞机自动化装配技术[J]. 航空学报, 2008, 29(3):734-740. XU G K. Automatic assembly technology for large aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(3):734-740(in Chinese).
[3] 朱永国, 黄翔, 宋利康, 等. 基于理想驱动力的中机身调姿多项式轨迹规划[J]. 计算机集成制造系统, 2015, 21(7):1790-1796. ZHU Y G, HUANG X, SONG L K, et al. Polynomial tra-jectory planning method based on ideal drive forces for aircraft fuselage pose adjustment[J]. Computer Integrated Manufacturing Systems, 2015, 21(7):1790-1796(in Chinese).
[4] JIN Y, CHANAL H, PACCOT F. Parallel robots[M]. London:Springer, 2015:5-8.
[5] 汪满新, 黄田. 1T2R3自由度并联机构拓扑结构综合[J]. 机械工程学报, 2015, 51(17):36-41. WANG M X, HUANG T. Type synthesis of 1T2R 3-DOF parallel mechanism[J]. Journal of Mechanical Engineering, 2015, 51(17):36-41(in Chinese).
[6] XIE F, LIU X J, YOU Z, et al. Type synthesis of 2T1R-type parallel kinematic mechanisms and the application in manufacturing[J]. Robotics & Computer Integrated Manufacturing, 2014, 30(1):1-10.
[7] MERLET J P. Parallel robots (second edition)[M]. London:Springer, 2006:3-6.
[8] 杜善义, 关志东. 我国大型客机先进复合材料技术应对策略思考[J]. 复合材料学报, 2008, 25(1):1-10. DU S Y, GUANG Z D. Strategic considerations for de velopment of advanced composite technology for large commercial aircraft in China[J]. Acta Materiae Compositae Sinica, 2008, 25(1):1-10(in Chinese).
[9] ZOU J. Indoor global positioning measurement system application for the aircraft flexible joint assembly[J]. Journal of General Microbiology, 2010, 74(1):61-69.
[10] RAMIREZ J, WOLLNACK J. Flexible automated assembly systems for large CFRP-structures[J]. Procedia Technology, 2014, 15:447-455.
[11] 刘辛军, 谢福贵, 汪劲松. 当前中国机构学面临的机遇[J]. 机械工程学报, 2015, 51(13):2-12. LIU X J, XIE F G, WANG J S. Current opportunities in the field of mechanisms in China[J]. Journal of Mechanical Engineering, 2015, 51(13):2-12(in Chinese).
[12] BI Z M, LANG S Y T, VERNER M, et al. Development of reconfigurable machines[J]. International Journal of Advanced Manufacturing Technology, 2008, 39(11):1227-1251.
[13] NEUMANN K E. Robot:US, 4732525[P]. 1988-03-22.
[14] NEUMANN K E. Tricept application[C]//The 3rd Chemnitz Parallel Kinematics Seminar. Zwickau:SAE International, 2002:1121-1126
[15] NEUMANN K E. The key to aerospace automation[C]//Aerospace Manufacturing and Automated Fastening Conference and Exhibition. Toulouse:SAE International, 2006:12-23.
[16] 王友渔, 黄田, CHETWYND D G, et al. Tricept机械手静刚度解析建模方法[J]. 机械工程学报, 2008, 44(8):13-19. WANG Y Y, HUANG T, CHETWYND D G, et al. Analytical method for stiffness modeling of the Tricept robot[J]. Journal of Mechanical Engineering, 2008, 44(8):13-19(in Chinese).
[17] NEUMANN K E. Parallel kinematical machine:WO, 2006054935[P]. 2006-05-26.
[18] NEUMANN K E, BOLEN A. Self-adapting parallel kinematic machines for large wing and fuselage assembly[C]//SAE 2010 Aerospace Manufacturing and Automated Fastening Conference & Exhibition. Kansas:SAE International, 2010:89-101.
[19] 祁萌, 李晓红, 高彬彬. 国外航空领域机器人技术发展现状与趋势分析[J]. 航空制造技术, 2018, 61(12):97-101. QI M, LI X H, GAO B B. Development status and trend analysis of robot technology in foreign aviation field[J]. Aeronautical Manufacturing Technology, 2018, 61(12):97-101(in Chinese).
[20] OLAZAGOTIA J L, WYATT S. New PKM Tricept T9000 and its application to flexible manufacturing at aerospace industry[C]//Aerospace Technology Conference and Exposition. 2007:94-106.
[21] 汪满新. 一种五自由度混联机器人静柔度建模与设计方法研究[D]. 天津:天津大学, 2015:1-4. WANG M X. Investigation into compliance modeling and design methodology of a five degree of freedom hybrid robot[D]. Tianjin:Tianjin University, 2015:1-4(in Chinese).
[22] 黄田, 李曚, 张大卫, 等. 四自由度混联机器人:CN 1439492A[P]. 2003-03-06. HUANG T, LI M, ZHANG D W, et al. A 4-DOF hybrid robot:CN 1439492A[P]. 2003-03-06(in Chinese).
[23] 黄田, 李曚, 李占贤, 等. 非对称空间5自由度混联机器人:CN1524662[P]. 2004-09-01. HUANG T, LI M, LI Z X, et al. A 5-DOF hybrid robot:CN 1524662A[P]. 2004-09-01(in Chinese).
[24] 黄田, 董成林, 刘海涛, 等. 一种含多轴转动支架的五自由度混联机器人:CN 104985596A[P]. 2015-07-09. HUANG T, DONG C L, LIU H T, et al. Five-degree-of-freedom parallel robot with multi-shaft rotary brackets:CN 104985596A[P]. 2015-07-09(in Chinese).
[25] HENNES N. Ecospeed:An innovative machining concept for high performance 5-axis-machining of large structural component in aircraft engineering[C]//The 3rd Chemnitz Parallel Kinematic Seminar. Zwickau:SAE International, 2002:763-774.
[26] JIN Y, KONG X, HIGGINS C, et al. Kinematic design of a new parallel kinematic machine for aircraft wing assembly[C]//IEEE International Conference on Industrial Informatics. Piscataway, NJ:IEEE Press, 2012:669-674.
[27] REID E. Development of a mobile drilling and fastening system based on a PKM robotic platform[C]//SAE 2015 AeroTech Congress & Exhibition. Seattle:SAE International, 2015:2059-2070.
[28] 王珉, 陈文亮, 张得礼, 等. 飞机轻型自动化制孔系统及关键技术[J]. 航空制造技术, 2012(19):40-43. WANG M, CHEN W L, ZHANG D L, et al. Light weight automatic drilling system and key technology for aircraft[J]. Aeronautical Manufacturing Technology, 2012(19):40-43(in Chinese).
[29] 王珉, 曾长, 陈文亮, 等. 一种用于飞机装配的八足并联自主移动机构[J]. 机械工程学报, 2013, 49(15):49-54. WANG M, ZHEN C, CHEN W L, et al. A kind of parallel mechanism of autonomous mobile for aircraft assembly[J]. Journal of Mechanical Engineering, 2013, 49(15):49-54(in Chinese).
[30] 王珉, 王谢苗, 陈文亮, 等. 具有变胞功能的自主移动制孔机构[J]. 北京航空航天大学学报, 2015, 41(3):398-404. WANG M, WANG X M, CHEN W L, et al. Autonomous mobile drilling mechanism with metamorphic function[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(3):398-404(in Chinese).
[31] 韩锋, 田威, 廖文和, 等. 基于并联机构的轻型自主爬行钻铆系统法向调姿算法[J]. 航空学报, 2015, 36(6):2083-2090. HANG F, TIAN W, LIAO W H, et al. Normal posture adjustment algorithm for lightweight auto-crawling drilling & riveting system based on parallel mechanism[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(6):2083-2090(in Chinese).
[32] 刘冬, 赵现朝, 齐臣坤. 行走、定位一体化飞机制孔六足机器人研究[J]. 机械设计与研究, 2012, 28(6):52-55. LIU D, ZHAO X C, QI C K. Research on walking-positioning integrated hexapod robot for drilling aircraft component[J]. Machine Design and Research, 2012, 28(6):52-55(in Chinese).
[33] BONE G M, CAPSON D. Vision-guided fixtureless assembly of automotive components[J]. Robotics and Computer-Integrated Manufacturing, 2003, 19(2):79-87.
[34] MCKEOWN C, WEBB P. A reactive reconfigurable tool for aerospace structures[J]. Assembly Automation, 2011, 31(4):334-343.
[35] 王亮, 李东升. 飞机数字化装配柔性工装技术体系研究[J]. 航空制造技术, 2012, 403(7):34-39. WANG L, LI D S. Flexible tooling technology system for aircraft digital assembly[J]. Aeronautical Manufacturing Technology, 2012, 403(7):34-39(in Chinese).
[36] 马政伟, 李卫东, 万敏, 等. 飞机侧壁部件装配调姿机构的设计与分析[J]. 北京航空航天大学学报, 2014, 40(2):280-284. MA Z W, LI W D, WAN M, et al. Design and analysis of flexible fixture for aircraft side panels[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(2):280-284(in Chinese).
[37] SCHWAKE K, WULFS J. Robot-based system for handling of aircraft shell parts[J]. Procedia CIRP, 2014, 23:104-109.
[38] 姜丽萍. 基于模型定义的中机身装配关键技术研究[D]. 南京:南京航空航天大学, 2016:50-56. JIANG L P. Research on key technology for fuselage automatic assembly based on model definition[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2016:50-56(in Chinese).
[39] 邱宝贵, 蒋君侠, 毕运波, 等. 大型飞机机身调姿与对接试验系统[J]. 航空学报, 2011, 32(5):908-919. QIU B G, JIANG J X, BI Y B, et al. Posture alignment and joining test system for large aircraft fuselages[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(5):908-919(in Chinese).
[40] ZHU Y G, HUANG X, LI S G. A novel six degrees-of-freedom parallel manipulator for aircraft fuselage assemble and its trajectory planning[J]. Journal of the Chinese Institute of Engineers, 2015, 38(7):928-937.
[41] ESSER M, VETTE M. Reconfigurable handling systems as an enabler for large components in mass customized production[J]. Journal of Intelligent Manufacturing, 2013, 24(5):977-990.
[42] LÖCHTE C, DIETRICH F, RAATZ A. A parallel kinematic concept targeting at more accurate assembly of aircraft sections[M]. Berlin:Springer, 2011:142-151.
[43] PRAUSE I, MBAREK T, CORVES B. Increasing the stiffness of a 3-PUU parallel kinematic positioning device for high payloads by modifying the leg configuration[C]//IFToMM Workshop on Fundamental Issues and Future Research Directions for Parallel Mechanisms and Manipulators. Tianjin:IFToMM, 2014:15-24.
[44] KIHLMAN H. Affordable automation for airframe assembly:developing of key enabling technologies[D]. Linköping:Linköping University, 2005:55-89.
[45] 郑联语, 刘清军, 张宏博, 等. 基于综合工装的盒式连接装配型架快速配置方法[J]. 计算机集成制造系统, 2014, 20(10):2426-2639. ZHEGN L Y, LIU Q J, ZHANG H B, et al. Papid configuration for box-joint assembly jigs based on composite tooling[J]. Computer Integrated Manufacturing Systems, 2014, 20(10):2426-2639(in Chinese).
[46] KIHLMAN H. Flexapods-flexible tooling at SAAB for building the NEURON aircraft[C]//SAE 2010 Aerospace Manufacturing and Automated Fastening Conference & Exhibition. Kansas:SAE International, 2010:59-74.
[47] DELFOI P H, OSSBAHR G, TOMLINSON D. Modular and configurable steel structure for assembly fixturest[C]//SAE 2010 Aerospace Manufacturing and Automated Fastening Conference & Exhibition. Kansas:SAE International, 2010:458-466.
[48] MULLER R, BRECHER C, CORVES B, et al. Self-optimization as an enabler for flexible and reconfigurable assembly systems[C]//International Conference on Intelligent Robotics and Applications. Berlin:Springer-Verlag, 2011:179-188.
[49] XIONG L, MOLFINO R, ZOPPI M. Fixture layout optimization for flexible aerospace parts based on self-reconfigurable swarm intelligent fixture system[J]. International Journal of Advanced Manufacturing Technology, 2013, 66(12):1305-1313.
[50] MANNHEIM T, RIEDEL M, HUSING M, et al. A new way of grasping:PARAGRIP-the fusion of gripper and robot[M]. London:Springer, 2013:433-464.
[51] MOLFINO R, ZOPPI M, ZLATANOV D. Reconfigurable swarm fixtures[C]//Asme/iftomm International Conference on Reconfigurable Mechanisms and Robots. Piscataway, NJ:IEEE Press, 2009:730-735.
[52] SAGAR K, LEONARDO L D, MOLFINO R, et al. The SwarmItFix pilot[J]. Procedia Manufacturing, 2017, 11:413-422.
[53] RAMIREZ J, WOLLNACK J. Flexible automated assembly systems for large CFRP-structures[J]. Procedia Technology, 2014, 15:447-455.
[54] SCHMITT R, CORVES B, LOOSEN P, et al. Cognition-enhanced, self-optimizing assembly systems[M]. London:Springer, 2017:877-984.
[55] SUN T, SONG Y M, DONG G, et al. Optimal design of a parallel mechanism with three rotational degrees of freedom[J]. Robotics & Computer Integrated Manufacturing, 2012, 28(4):500-508.
[56] 刘雄伟, 郑亚青, 林麒. 应用于飞行器风洞试验的绳牵引并联机构技术综述[J]. 航空学报, 2004, 25(4):393-400. LIU X W, ZHENG Y Q, LIN Q. Overview of wire-driven parallel kinematic manipulators for aircraft wind tunnels[J]. Acta Aeronautica et Astronautica Sinica, 2004, 25(4):393-400(in Chinese).
[57] IZARD J B, DUBOR A, HERVE P E, et al. On the improvements of a cable-driven parallel robot for achieving additive manufacturing for construction[M]. Cham:Springer, 2018:29-41.
[58] 黄田, 李曚, 吴孟丽, 等. 可重构PKM模块的选型原则——理论与实践[J]. 机械工程学报, 2005, 41(8):36-41. HUANG T, LI M, WU M L, et al. Criteria for conceptual design of reconfigurable PKM modules-theory and application[J]. Journal of Mechanical Engineering, 2005, 41(8):36-41(in Chinese).
[59] MULLER R, ESSER M, MBAREK T, et al. Development of modular low cost automation systems for aircraft assembly[C]//Aerospace Technology Conference and Exposition. 2011:26-41.
[60] SCHNEIDER T. Innovative approach for modular and flexible positioning systems for large aircraft Assembly[C]//SAE 2015 AeroTech Congress & Exhibition. Seattle:SAE International, 2015:2503-2508.
[61] JEFFERSON T, CROSSLEY R, SMITH T, et al. Review of reconfigurable assembly systems technologies for cost effective wing structure assembly[C]//SAE 2013 AeroTech Congress & Exhibition. Quebec:SAE International, 2013:2336-2349.
[62] HERRERO S, MANNHEIM T, PRAUSE I, et al. Enhancing the useful workspace of a reconfigurable parallel manipulator by grasp point optimization[J]. Robotics and Computer Integrated Manufacturing, 2015, 31:51-60.
[63] 吴腾, 张武翔, 丁希仑. 一种新型并联变胞机构的设计与分析[J]. 机械工程学报, 2015,51(7):30-37. WU T, ZHAGN W X, DING X L. Design and analysis of a novel parallel metamorphic mechanism[J]. Journal of Mechanical Engineering, 2015, 51(7):30-37(in Chinese).
[64] 叶伟, 方跃法, 郭盛, 等. 基于运动限定机构的可重构并联机构设计[J]. 机械工程学报, 2015,51(13):137-143. YE W, FANG Y F, GUO S, et al. Design of reconfigurable parallel mechanisms with discontinuously movable mechanism[J]. Journal of Mechanical Engineering, 2015,51(13):137-143(in Chinese).
[65] 戴建生. 机构学与旋量理论的历史渊源以及有限位移旋量的发展[J]. 机械工程学报, 2015, 51(13):13-26. DAI J S. Historical relation between mechanisms and screw theory and the development of finite displacement screws[J]. Journal of Mechanical Engineering, 2015, 51(13):13-26(in Chinese).
[66] 黄真, 赵永生, 赵铁石. 高等空间机构学[M]. 北京:高等教育出版社, 2014:115-127. HUANG Z, ZHAO Y S, ZHAO T S. Advanced spatical mechanism[M]. Beijing:Higher Education Press, 2014:115-127(in Chinese).
[67] 史巧硕, 马岱, 高峰, 等. 基于GF集的并联机构末端运动特征分析方法[J]. 南开大学学报(自然科学版), 2008(5):21-26. SHI Q S, MA D, GAO F, et al. Method for kinematic characteristics analysis of the end-effector of parallel mechanisms based on GF set[J]. Acta Scientiarum Naturalium Universitatis Nankaiensis, 2008(5):21-26(in Chinese).
[68] MURRAY R M, SASTRY S S, LI Z. A mathematical introduction to robotic manipulation[M]. 1994:19-50.
[69] 杨廷力, 刘安心, 罗玉峰, 等. 机器人机构结构综合方法的基本思想、特点及其发展趋势[J]. 机械工程学报, 2010, 46(9):1-11. YANG T L, LIU A X, LUO Y F, et al. Basic principles, main characteristics and development tendency of methods for robot mechanism structure synthesis[J]. Journal of Mechanical Engineering, 2010, 46(9):1-11(in Chinese).
[70] JIN Y, ABELLA R, ARES E, et al. Modeling and digital tool development of a new similarity metric for aerospace production[J]. International Journal of Advanced Manufacturing Technology, 2013, 69(1-4):777-795.
[71] 靳江艳, 黄翔, 卢鹄, 等. 飞机设计域向工装域映射机理研究[J]. 航空学报, 2012, 33(12):2330-2337. JIN J Y, HUANG X, LU H, et al. Research on mapping mechanism from product design to tooling concept design for aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(12):2330-2337(in Chinese).
[72] 陈祥, 谢福贵, 刘辛军. 并联机构中运动/力传递功率最大值的评价[J]. 机械工程学报, 2014, 50(3):1-9. CHEN X, XIE F G, LIU X J. Evaluation of the maximum value of motion/force transmission power in parallel manipulators[J]. Journal of Mechanical Engineering, 2014, 50(3):1-9(in Chinese).
[73] 盖宇春, 朱伟东, 柯映林. 三坐标定位器部件刚度配置方法[J]. 浙江大学学报(工学版), 2014, 48(8):1434-1441. GAI Y C, ZHU W D, KE Y L. Stiffness parameter configuration of Cartesian positioner components[J]. Journal of Zhejiang University (Engineering Science), 2014, 48(8):1434-1441(in Chinese).
[74] 张洪双, 王青, 柯映林, 等. 基于并联机构调姿的大部件支撑点优选[J]. 计算机集成制造系统, 2014, 20(10):2419-2425. ZHANG H S, WANG Q, KE Y L, et al. Supporting point optimal selection of big part based on parallel mechanism align-positioning[J]. Computer Integrated Manufacturing Systems, 2014, 20(10):2419-2425(in Chinese).
[75] 孙涛. 少自由度并联机构性能评价指标体系研究[D]. 天津:天津大学, 2012:15-19. SUN T. Performance evaluation index framework of lower mobility parallel manipulators[D]. Tianjin:Tianjin University, 2012:15-19(in Chinese).
[76] CIRILLO A, CIRILLO P, MARIA G D, et al. Optimal custom design of both symmetric and unsymmetrical hexapod robots for aeronautics applications[J]. Robotics and Computer Integrated Manufacturing, 2017, 44:1-16.
[77] JIN Y, BI Z, HIGGINS C, et al. Optimal design of a new parallel kinematic machine for large volume machining[C]//DAI J S, ZOPPI M, KONG X W. Advances in Reconfigurable Mechanisms and Robots I. London:Springer, 2012:343-354.
[78] JAMSHIDI J, MAROPOULOS P G. Methodology for high accuracy installation of sustainable jigs and fixtures[M]. Berlin:Springer, 2011:149-155.
[79] 洪振宇, 梅江平, 赵学满, 等. 可重构混联机械手-TriVariant的误差建模与灵敏度分析[J]. 机械工程学报, 2006, 42(12):65-69. HONG Z Y, MEI J P, ZHAO X M, et al. Error modeling and sensitivity analysis of reconfigurable hybrid robot module TriVariant[J]. Journal of Mechanical Engineering, 2006, 42(12):65-69(in Chinese).
[80] 郭志敏, 蒋君侠, 柯映林. 基于POGO柱三点支撑的飞机大部件调姿方法[J]. 航空学报, 2009, 30(7):1319-1324. GUO Z M, JIANG J X, KE Y L. Posture alignment for large aircraft parts based on three POGO sticks distributed support[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(7):1319-1324(in Chinese).
[81] 朱永国, 黄翔, 方伟, 等. 机身自动调姿方法及误差分析[J]. 南京航空航天大学学报, 2011, 43(2):229-234. ZHU Y G, HUANG X, FANG W, et al. Fuselage automatic position and pose adjustment method and its error analysis[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2011, 43(2):229-234(in Chinese).
[82] GERHARD M, TAOUFIK M, NIBAT B. High precision positioning system for aircraft structural[C]//15th International Conference on Experimental Mechanics. Porto:ICEM15, 2012:1-14.
[83] ZHAO Y, JIN Y, ZHANG J. Kinetostatic modeling and analysis of an exechon parallel kinematic machine(PKM) module[J]. Chinese Journal of Mechanical Engineering, 2016, 29(1):33-44.
[84] 陈根良. 操作机构尺寸与变形误差传递的统一建模方法研究[D]. 上海:上海交通大学, 2014:3-17. CHEN G L. A unified error transmission model of robot manipulators considering both kinematic and deformation errors[D]. Shanghai:Shanghai Jiao Tong University, 2014:3-17(in Chinese).
[85] SCHROER K, ALBRIGHT S, GRETHLEIN M. Complete, minimal and model continuous kinematic models for robot calibration[J]. Robotics and Computer-Integrated Manufacturing, 1997, 13(1):73-85.
[86] MBAREK T, MEISSNER A, BIYIKLIOGLU N. Positioning system for the aircraft structural assembly[J]. SAE International Journal of Aerospace, 2011, 4(2):1038-1047.
[87] STOLT A, LINDEROTH M, ROBERTSSON A, et al. Force controlled assembly of flexible aircraft structure[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ:IEEE Press, 2013:6027-6032.
[88] 罗中海, 孟祥磊, 巴晓甫, 等. 飞机大部件调姿平台力位混合控制系统设计[J]. 浙江大学学报(工学版), 2015, 49(2):265-274. LUO Z H, MENG X L, BA X F, et al. Design on hybrid force position control of large components posture alignment platform[J]. Journal of Zhejiang University (Engineering Science), 2015, 49(2):265-274(in Chinese).
[89] KE W, DU F, ZHANG X. Algorithm and experiments of six-dimensional force/torque dynamic measurements based on a Stewart platform[J]. Chinese Journal of Aeronautics, 2016, 29(6):1840-1851.
[90] FANG Q, CHEN W, ZHAO A, et al. Control system designing for correcting wing-fuselage assembly deformation of a large aircraft[J]. Assembly Automation, 2017, 37(1):22-33.
[91] BERTELSMEIER F, DETERT T, UBELHOR T, et al. Cooperating robot force control for positioning and un-twisting of thin walled components[J]. Advances in Ro-botics & Automation, 2017, 6(3):1-7.
[92] ERDEM I, HELGOSSON P, KIHLMAN H. Development of automated flexible tooling as enabler in wing box assembly[J]. Procedia CIRP, 2016, 44:233-238.