Fluid Mechanics and Flight Mechanics

Aerodynamic optimization design of large civil aircraft wings using surrogate-based model

  • HAN Zhonghua ,
  • ZHANG Yu ,
  • XU Chenzhou ,
  • WANG Kai ,
  • WU Mengmeng ,
  • ZHU Zhen ,
  • SONG Wenping
Expand
  • School of Aeronautics, Northwestern Polytechical University, Xi'an 710072, China

Received date: 2018-06-01

  Revised date: 2018-06-21

  Online published: 2018-09-30

Supported by

National Natural Science Foundation of China (11772261); Aeronautical Science Foundation of China (2016ZA53011); Innovation Foundation of Doctor Dissertation of Northwestern Polytechnical University (CX201801)

Abstract

Advanced methods of aerodynamic shape optimization are playing an increasingly important role in improving performance and saving cost for the design of a large transport aircraft. In this article, the design principles of the modern large transport aircraft wing, from the perspective of an aerodynamicist, are presented. Using the surrogate-based approach, an efficient multi-round aerodynamic shape optimization for engineering applications is proposed. The proposed method is verified by test cases using an analytical test function, an airfoil design and an aerodynamic shape optimization of wing-body configuration. Then, the aerodynamic shape optimization for supercritical wing of a dual-aisle large transport aircraft is exercised by combining the proposed method with the method of directly modifying the shape (drawing on the experience of an aerodynamic designer). A comprehensive evaluation of aerodynamic performances of the optimal wing is conducted by using different Reynolds-averaged Navier-Stokes (RANS) equations flow solvers. The results show that the proposed method is feasible and effective for aerodynamic shape optimization for complex aircraft configurations, with good capability of constraints handling and global optimization. This study shows that the proposed optimization design method is applicable to engineering aerodynamic design of the supercritical wing of a wide-body transport aircraft.

Cite this article

HAN Zhonghua , ZHANG Yu , XU Chenzhou , WANG Kai , WU Mengmeng , ZHU Zhen , SONG Wenping . Aerodynamic optimization design of large civil aircraft wings using surrogate-based model[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019 , 40(1) : 522398 -522398 . DOI: 10.7527/S1000-6893.2018.22398

References

[1] SLOTNICK J, KHODADOUST A, ALONSO J, et al. CFD vision 2030 study:A path to revolutionary computational aerosciences:NASA/CR-2014-218178[R]. Washington, D.C.:NASA, 2014.
[2] 张淼, 刘铁军, 马涂亮, 等. 基于CFD方法的大型客机高速气动设计[J]. 航空学报, 2016, 37(1):244-254. ZHANG M, LIU T J, MA T L, et al. High speed aerodynamic design of large civil transporter based on CFD method[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1):244-254(in Chinese).
[3] 周铸, 黄江涛, 黄勇, 等. CFD技术在航空工程领域的应用、挑战与发展[J]. 航空学报, 2017, 38(3):020891. ZHOU Z, HUANG J T, HUANG Y, et al. CFD technology in aeronautic engineering field:Applications, challenges and development[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(3):020891(in Chinese).
[4] 白鹏, 马汉东, 周伟江. CFD在大飞机设计中的工程化应用[C]//中国航空学会2007年学术年会论文集. 北京:中国航空学会, 2007:1-6. BAI P, MA H D, ZHOU W J. Engineering application of CFD in large-scale aircraft design[C]//CSAA Annual Meeting in 2007. Beijing:CSAA, 2007:1-6(in Chinese).
[5] VAN DAM C P. The aerodynamic design of multi-element high-lift systems for transport airplane[J]. Progress in Aerospace Sciences, 2002, 38:101-114.
[6] 张宇飞, 陈海昕, 符松, 等. 一种实用的运输类飞机机翼/发动机短舱一体化优化设计方法[J]. 航空学报, 2012, 33(11):1993-2001. ZHANG Y F, CHEN H X, FU, S, et al. A practical optimization design method for transport aircraft wing/nacelle integration[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(11):1993-2001(in Chinese).
[7] ANTUNES A P, AZEVEDO J L F. Studies in aerodynamic optimization based on genetic algorithms[J]. Journal of Aircraft, 2014, 51(3):1002-1012.
[8] SHAN S, WANG G G. Survey of modeling and optimization strategies to solve high-dimensional design problems with computationally-expensive black-box functions[J]. Structural and Multidisciplinary Optimization, 2010, 41(2):219-241.
[9] 李立, 白俊强, 郭同彪, 等. 考虑放宽静稳定度的民机客机气动优化设计[J]. 航空学报, 2017, 38(9):121112. LI L, BAI J Q, GUO T B, et al. Aerodynamic optimization design of the civil aircraft considering relaxed static stability[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(9):121112(in Chinese).
[10] JAMESON A. Aerodynamic design via control theory[J]. Journal of Scientific Computing, 1988, 3(3):233-260.
[11] MARTINS J R R A, HWANG J. Review and unification of methods for computing derivatives of multidisciplinary computational models[J]. AIAA Journal, 2013, 51(11):2582-2599.
[12] CHERNUKHIN O, ZINGG D W. Multimodality and global optimization in aerodynamic design[J]. AIAA Journal, 2013, 51(6):1342-1354.
[13] 韩忠华. Kriging模型及代理优化算法研究新进展[J]. 航空学报, 2016, 37(11):3197-3225. HAN Z H. Kriging surrogate model and its application to design optimization:A review of recent progress[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11):3197-3225(in Chinese).
[14] LIU J, SONG W P, HAN Z H, et al. Efficient aerodynamic shape optimization of transonic wings using a parallel infilling strategy and surrogate models[J]. Structural and Multidisciplinary Optimization, 2016, 55(3):925-943.
[15] HAN Z H, CHEN J, ZHANG K S, et al. Aerodynamic shape optimization of natural-laminar-flow wing using surrogate-based approach[J]. AIAA Journal, 2018, 56(7):2579-2593.
[16] ZHANG Y, HAN Z H, ZHANG K S. Variable-fidelity expected improvement method for efficient global optimization of expensive functions[J]. Structural and Multidisciplinary Optimization, 2018, 58(4):1431-1451.
[17] ZHANG K S, HAN Z H, GAO Z J, et al. Constraint aggregation for large number of constraints in wing surrogate-based optimization[J/OL]//Structural and Multidisciplinary Optimization, 2018:1-18.[2018-09-15]. https://doi.org/10.1007/s00158-018-2074-4.
[18] HAN Z H, ZHANG Y, SONG C X, et al. Weighted gradient-enhanced Kriging for high-dimensional surrogate modelling and design optimization[J]. AIAA Journal, 2017, 55(12):4330-4346.
[19] HAN Z H, ABU-ZURAYK M, GÖRTZ S, et al. Surrogate-based, aerodynamic shape optimization of a wing-body transport aircraft configuration[M]//HEINRICH R. AeroStruct:Enable and learn how to integrate flexibility in design. Berlin:Springer, 2018, 138:257-282.
[20] 韩少强, 宋文萍, 韩忠华, 等. 基于梯度增强型Kriging模型的气动反设计方法[J]. 航空学报, 2017, 38(7):120817. HAN S Q, SONG W P, HAN Z H, et al. Aerodynamic inverse design method based on gradient-enhanced Kriging model[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(7):120817(in Chinese).
[21] 乔建领, 韩忠华, 宋文萍. 基于代理模型的高效全局低音爆优化设计方法[J]. 航空学报, 2018, 39(5):121736. QIAO J L, HAN Z H, SONG W P. An efficient surrogate-based global optimization for low sonic boom design[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(5):121736(in Chinese).
[22] 孙祥程, 韩忠华, 柳斐, 等. 高超声速飞行器宽速域翼型/机翼设计与分析[J]. 航空学报, 2018, 39(6):121737. SUN X C, HAN Z H, LIU F, et al. Aerodynamic design and analysis of airfoil/wing at wide-range Mach numbers[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(6):121737(in Chinese).
[23] 赵童, 张宇飞, 陈海昕, 等. 面向三维机翼性能的超临界翼型优化设计方法[J]. 中国科学:物理学力学天文学, 2015, 45(10):104708. ZHAO T, ZHANG Y F, CHEN H X, et al. Aerodynamic optimization method of supercritical airfoil geared to the performance of swept and tapered wing[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2015, 45(10):104708(in Chinese).
[24] TESFAHUNEGN Y A, KOZIEL S, GRAMANZINI J R, et al. Application of direct and surrogate-based optimization to two-dimensional benchmark aerodynamic problems:A comparative study:AIAA-2015-0265[R]. Reston:AIAA, 2015.
[25] HAN Z H. SurroOpt:A generic surrogate-based optimization code for aerodynamic and multidisciplinary design[C]//30th ICAS, 2016:2016-0281.
[26] HAN Z H, GOERTZ S, ZIMMERMANN R. Improving variable-fidelity surrogate modeling via gradient-enhanced Kriging and a generalized hybrid bridge function[J]. Aerospace Science and technology, 2013, 25:177-189.
[27] HAN Z H, ZIMMERMANN R, GOERTZ S. An alternative cokriging model for variable-fidelity surrogate modeling[J]. AIAA Journal, 2012, 50(5):1205-1210.
[28] HAN Z H, GOERTZ S. Hierarchical Kriging model for variable-fidelity surrogate modeling[J]. AIAA Journal, 2012, 50(9):1285-1296.
[29] KULFAN B M. Universal parametric geometry representation method[J]. Journal of Aircraft, 2008, 45(1):142-158.
[30] VASSBERG J, DEHAAN M, MELISSA RIVERS S, et al. Development of a common research model:AIAA-2008-6919[R]. Reston, VA:AIAA, 2008.
[31] 王运涛, 孙岩, 王光学, 等. DLR-F6翼身组合体的高阶精度数值模拟[J]. 航空学报, 2015, 36(9):2923-2929. WANG Y T, SUN Y, WANG G X, et al. High-order accuracy numerical simulation of DLR-F6 wing-body configuration[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(9):2923-2929(in Chinese).
Outlines

/