Solid Mechanics and Vehicle Conceptual Design

Multiaxial fatigue behavior and life prediction of aerospace aluminum alloy under pre-corrosion and alternate corrosion

  • CHEN Yajun ,
  • LIU Chenchen ,
  • WANG Fusheng
Expand
  • Sino-European Institute of Aviation Engineering, Civil Aviation University of China, Tianjin 300300, China

Received date: 2018-06-20

  Revised date: 2019-07-17

  Online published: 2018-09-17

Supported by

National Natural Science Foundation of China (11502285); Tianjin Science and Technology Support Project (18JCTPJC66800); the Fundamental Research Funds for the Central Universities (ZYGX2018020)

Abstract

When aircraft is in service in a corrosive environment, its damage mode shows an alternate process of corrosion on ground and fatigue in air. Based on the characteristic of this working condition, the effects of pre-corrosion and alternate corrosion on multiaxial fatigue behavior of 2024-T4 and 7075-T651 aerospace aluminum alloys are studied. Under the same equivalent stress amplitude, with the increase of the pre-corrosion time, the number and size of pits on specimen's surface augment, indicating that the weight of corrosive influence increases and the multiaxial fatigue life of the two alloys decreases. When the unit loading units hold constant, the unit corrosion time increases, decreasing the multiaxial fatigue life. With the augmentation of the alternate stage, corrosion on the surface of specimen tends to be more severe. Based on the Miner model and life data from pre-corrosion fatigue tests, a modified accumulative damage model is proposed, which shows fine results within 2x scatter bands in alternate corrosion-multiaxial fatigue life prediction.

Cite this article

CHEN Yajun , LIU Chenchen , WANG Fusheng . Multiaxial fatigue behavior and life prediction of aerospace aluminum alloy under pre-corrosion and alternate corrosion[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019 , 40(4) : 222465 -222465 . DOI: 10.7527/S1000-6893.2018.22465

References

[1] 中国航空材料编委会. 中国航空材料手册.第3卷. 铝合金、镁合金、钛合金[M]. 北京:中国标准出版社, 1989:5-8. Edit Committee of China Aeronautical Materials Handbook. China aeronautical materials handbook:Volume Ⅲ. aluminum alloy magnesium alloy titanium alloy[M]. Beijing:Standard Press of China, 1989:5-8(in Chinese).
[2] 杨守杰, 戴圣龙. 航空铝合金的发展回顾与展望[J]. 材料导报, 2005, 19(2):76-80. YANG S J, DAI S L. A Glimpse at the development and application of aluminum alloys in aviation industry[J]. Materials Review, 2005, 19(2):76-80(in Chinese).
[3] DURSUNT, SOUTIS C. Recent developments in advanced aircraft aluminium alloys[J]. Materials & Design, 2014, 56(4):862-871.
[4] BHUIYAN M S, MUTOH Y, MURAI T, et al. Corrosion fatigue behavior of extruded magnesium alloy AZ61 under three different corrosive environments[J]. International Journal of Fatigue, 2008, 30(10):1756-1765.
[5] DOLLEY E J, LEE B, WEI R P. The effect of pitting corrosion on fatigue life[J]. Fatigue & Fracture of Engineering Materials & Structures, 2000, 23(7):555-560.
[6] CHLISTOVSKYR M, HEFFERNAN P J, DUQUESNAY D L. Corrosion-fatigue behavior of 7051-T651 aluminum alloy subjected to periodic overloads[J]. International Journal of Fatigue, 2007, 29(9-11):1941-1949.
[7] 穆志韬, 陈定海, 朱做涛, 等. 腐蚀条件下LD2航空铝合金裂纹扩展规律研究[J]. 航空学报, 2013, 34(3):574-579. MU Z T, CHEN D H, ZHU Z T, et al. Fatigue crack growth behavior of aerospace aluminum alloy LD2 under corrosion[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(3):574-579(in Chinese).
[8] 张腾, 何宇廷, 高潮, 等. 长期大气腐蚀对2A12-T4铝合金结构疲劳性能的影响[J]. 航空学报, 2015, 36(7):2444-2456. ZHANG T, HE Y T, GAO C, et al. Effect of long-term atmospheric corrosion on fatigue behavior of 2A12-T4 aluminum structures[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(7):2444-2456(in Chinese).
[9] 王池权, 熊峻江. 3. 5%NaCl腐蚀环境下2种航空铝合金材料疲劳性能试验研究[J]. 工程力学, 2017, 34(11):225-230. WANG C Q, XIONG J J. Relative tests on fatigue properties of aluminum alloys in 3. 5% NaCl corrosion environment[J]. Engineering Mechanics, 2017, 34(11):225-230(in Chinese).
[10] 陈亚军, 王先超, 王付胜, 等. 2A12铝合金的多轴加载疲劳行为[J]. 材料工程, 2017, 45(8):68-75. CHEN Y J, WANG X C, WANG F S, et al. Fatigue behavior of 2A12 aluminum alloy under multiaxial loading[J]. Journal of Materials Engineering, 2017, 45(8):68-75(in Chinese).
[11] ZHAO T, JIANG Y. Fatigue of 7075-T651 aluminum alloy[J]. International Journal of Fatigue, 2008, 30(5):834-849.
[12] CHEN Y J, LIU C C, ZHOU J, et al. Multiaxial fatigue behaviors of 2024-T4 aluminum alloy under different corrosion conditions[J]. International Journal of Fatigue, 2017, 98:269-278.
[13] HU P, MENG Q, HU W, et al. A continuum damage mechanics approach coupled with an improved pit evolution model for the corrosion fatigue of aluminum alloy[J]. Corrosion Science, 2016, 113:78-90.
[14] JONES K, HOEPPNER D W. Prior corrosion and fatigue of 2024-T3 aluminum alloy[J]. Corrosion Science, 2006, 48(10):3109-3122.
[15] 张有宏, 吕国志, 陈跃良. LY12-CZ铝合金预腐蚀及疲劳损伤研究[J]. 航空学报, 2005, 26(6):779-782. ZHANG Y H, LV G Z, CHEN Y L. Predicting fatigue life from pre-corroded LY12-CZ aluminium test[J]. Acta Aeronautica et Astronautica Sinica, 2005, 26(6):779-782(in Chinese).
[16] NAN Z Y, ISHIHARA S, GOSHIMA T. Corrosion fatigue behavior of extruded magnesium alloy AZ31 in sodium chloride solution[J]. International Journal of Fatigue, 2008, 30(7):1181-1188.
[17] 刘轩, 刘慧丛, 李卫平, 等. 7075铝合金在不同温度盐水环境中的腐蚀疲劳行为[J]. 航空学报, 2014, 35(10):2850-2856. LIU X, LIU H C, LI W P, et al. Corrosion fatigue behavior of 7075 aluminum alloy in saline water environment at different temperatures[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(10):2850-2856(in Chinese).
[18] 李晓虹, 何宇廷, 张腾, 等. 腐蚀/疲劳交替作用下2A12-T4铝合金的损伤特性[J]. 机械工程材料, 2015, 39(6):62-66. LI X H, HE Y T, ZHANG T, et al. Damage characteristics of 2A12-T4 aluminum alloy under alternating action of corrosion and fatigue[J]. Materials for Mechanical Engineering, 2015, 39(6):62-66(in Chinese).
[19] 蔡剑, 刘道新, 叶作彦, 等. 腐蚀与交变载荷循环作用对2A12-T4铝合金疲劳寿命的影响[J]. 中国腐蚀与防护学报, 2015, 35(1):61-68. CAI J, LIU D X, YE Z Y, et al. Influence of cyclic action of corrosion and alternate load on fatigue life of 2A12-T4 aluminum alloy[J]. Journal of Chinese Society for Corrosion and Protection, 2015, 35(1):61-68(in Chinese).
[20] LI C F, HE Y T, FENG Y, et al. The reliability life of 7B04 aluminum alloy under alternate action of corrosion and fatigue[J]. Mathematical Problems in Engineering, 2016, 2016:3907420.
[21] 杨晓华, 姚卫星, 段成美. 腐蚀环境下LC4铝合金疲劳损伤累积规律研究[J]. 航空学报, 2003, 24(3):234-236. YANG X H, YAO W X, DUAN C M. Research on fatigue damage cumulative rule under corrosion environment[J]. Acta Aeronautica et Astronautica Sinica, 2003, 24(3):234-236(in Chinese).
[22] TAN X M, CHEN Y L, JIN P. Corrosion fatigue life prediction of aircraft structure based on fuzzy reliability approach[J]. Chinese Journal of Aeronautics, 2005, 18(4):346-351.
[23] LI S X, AKID R. Corrosion fatigue life prediction of a steel shaft material in seawater[J]. Engineering Failure Analysis, 2013, 34(8):324-334.
[24] 张海威, 何宇廷, 范超华, 等. 腐蚀/疲劳交替作用下飞机金属材料疲劳寿命计算方法[J]. 航空学报, 2013, 34(5):1114-1121. ZHANG H W, HE Y T, FAN C H, et al. Fatigue life prediction method for aircraft metal material under alternate corrosion/fatigue process[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(5):1114-1121(in Chinese).
[25] WANG C Q, XIONG J J, SHENOI R A, et al. A modified model to depict corrosion fatigue crack growth behavior for evaluating residual lives of aluminum alloys[J]. International Journal of Fatigue, 2016, 83:280-287.
[26] 李昌范, 何宇廷, 张胜, 等. 7B04-T6铝合金腐蚀疲劳交替寿命预测模型[J]. 航空动力学报, 2016, 31(5):1073-1080. LI C F, HE Y T, ZHANG S, et al. Life prediction model of 7B04-T6 aluminum alloy under alternate action of corrosion and fatigue[J]. Journal of Aerospace Power, 2016, 31(5):1073-1080(in Chinese).
[27] ISHIHARA S, SAKA S, NAN Z Y, et al. Prediction of corrosion fatigue lives of aluminium alloy on the basis of corrosion pit growth law[J]. Fatigue & Fracture of Engineering Materials & Structures, 2010, 29(6):472-480.
[28] 邓景辉, 陈平剑, 付裕. 用于预腐蚀航空铝合金材料疲劳寿命分析的腐蚀当量裂纹的抛物线模型[J]. 航空学报, 2018, 39(2):221421. DENG J H, CHEN P J, FU Y. Parabolic model of equivalent crack approach for predicting fatigue life of pre-corroded aluminum alloy[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(2):221421(in Chinese).
[29] HUANG Y, YE X, HU B, et al. Equivalent crack size model for pre-corrosion fatigue life prediction of aluminum alloy 7075-T6[J]. International Journal of Fatigue, 2016, 88:217-226.
[30] 中国国家标准化管理委员会. 金属材料疲劳试验轴向力控制方法:GB/T 3075-2008[S]. 北京:中国标准出版社, 2008. Standardization Administration of China. Metallic materials-fatigue testing-axial-force-controlled method:GB/T 3075-2008[S]. Beijing:Standards Press of China, 2008(in Chinese).
[31] 中国国家标准化管理委员会. 金属材料扭应力疲劳试验方法:GB/T 12443-2007[S]. 北京:中国标准出版社, 2007. Standardization Administration of China. Metallic materials-torsional stress fatigue testing method:GB/T 12443-2007[S]. Beijing:Standards Press of China, 2007(in Chinese).
[32] American Society for Testing Materials. Standard Practice for Strain-Controlled Axial-Torsional Fatigue Testing with Thin-Walled Tubular Specimens:ASTM E2207-15[S]. West Conshohocken, PA:ASTM International, 2015.
[33] PALMGREN A. Die lebensdauer von kugellagern[J]. Zeitschrift des Vereins Deutscher Ingenieure, 1924, 68:339-341.
[34] MINER M A. Cumulative damage in fatigue[J]. Journal of Applied Mechanics, 1945, 12:A159-A164.
[35] SUSMEL L. Estimating fatigue lifetime of steel weldments locally damaged by variable amplitude multiaxial stress fields[J]. International Journal of Fatigue, 2010, 32(7):1057-1080.
[36] CHEN H, SHANG D G. An on-line algorithm of fatigue damage evaluation under multiaxial random loading[J]. International Journal of Fatigue, 2011, 33(2):250-254.
Outlines

/