Special Column on Key Technology in Aerodynamic Strength and Landing Safety of Carrier-based Aircraft

Methods for improving pitching moment characteristics of a propeller airplane

  • CHEN Bo ,
  • MIAO Tao ,
  • MA Shuai ,
  • GENG Jianzhong ,
  • JIANG Xiong
Expand
  • 1. Computational Aerodynamics Institute, China Aerodynamic Research and Development Center, Mianyang 621000, China;
    2. AVIC The First Aircraft Design Institute, Xi'an 710089, China

Received date: 2018-05-18

  Revised date: 2018-06-11

  Online published: 2018-08-30

Abstract

The aerodynamic disturbance caused by propeller slipstream on various parts of a propeller airplane results in the deterioration of pitching moment characteristics of a propeller airplane, and endangers flight safety. It is very important to study the influence mechanism of propeller slipstream on pitching moment characteristics and methods for improving pitching moment characteristics with propeller slipsteam for a propeller airplane. Numerical simulation of the flow field around a propeller airplane with different pull coefficients is carried out by using multi-block structured grids which are dynamically overlapped. The governing equation is unsteady Reynolds average compressible Navier-Stokes equations. The results show that the aerodynamic interference of propeller slipstream on wings and flat tails is the main reason of the deterioration of pitching moment characteristics of a propeller airplane. The key to improve pitching moment characteristics of a propeller airplane is to improve lift characteristics of its flat tails. Using the falling configuration when its thrust coefficient is 0.4 as the optimization object, methods for improving pitching moment characteristics of a propeller airplane are studied, in terms of lowering the height of flat tails, changing the dihedral angle of flat tails, and raising the axis of propellers. It is found that pitching moment characteristics of a propeller airplane can be significantly improved by reducing the vertical distance between the flat tails and the axis of propellers without increasing the overall downwash strength of the wings.

Cite this article

CHEN Bo , MIAO Tao , MA Shuai , GENG Jianzhong , JIANG Xiong . Methods for improving pitching moment characteristics of a propeller airplane[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019 , 40(4) : 622341 -622341 . DOI: 10.7527/S1000-6893.2018.22341

References

[1] ROOSENBOOM E,STUERMER A, SCHRODER A. Advanced experimental and numerical validation and analysis of propeller slipstream flows[J]. Journal of Aircraft, 2010, 47(1):284-291.
[2] STUERMER A, RAKOWITZ M. Unsteady simulation of a transport aircraft propeller using MEGAFLOW:RTO-MP-AVT-123[R].Neuilly-sur-Seine:RTO, 2005.
[3] 赵学训. 螺旋桨滑流对飞机绕流影响的试验研究[J].气动实验与测量控制, 1995, 9(4):48-52. ZHAO X X. Experiment research of the airflow which surrounds aircraft under the influence of propeller slipstream[J]. Aerodynamic Experiment and Measurement & Control, 1995, 9(4):48-52(in Chinese).
[4] 李征初, 王勋年, 陈洪, 等. 螺旋桨滑流对飞机机翼流场影响试验研究[J]. 流体力学实验与测量, 2000, 14:44-48. LI Z C, WANG X N, CHEN H, et al. Experimental research of influence of propeller slipstream on wing flow field[J]. Experiments and Measurements in Fluid Mechanics, 2000, 14:44-48(in Chinese).
[5] 李兴伟, 李聪, 高静, 等. 螺旋桨滑流对飞机纵向气动特性的影响研究[J]. 实验流体力学, 2017, 31(5):46-52,87. LI X W, LI C, GAO J, et al. Propeller slipstream effect on longitudinal aerodynamic characteristics of airplane[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(5):46-52, 87(in Chinese).
[6] 李兴伟, 李聪, 徐传宝, 等. 螺旋桨滑流与平尾深失速效应耦合影响试验研究[J]. 实验流体力学, 2018, 32(1):84-89. LI X W, LI C, XU C B, et al. Experimental research on the coupling effect of propeller slipstream and flat tail deep stall on aerodynamic characteristics of airplane[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(1):84-89(in Chinese).
[7] MULLER J, ASCHWANDEN M. Wind tunnel simula-tion of propeller effects in the A400M FLA-4 model:AIAA-2005-3706[R]. Reston, VA:AIAA, 2005.
[8] ROOSENBOOM E, HEIDER A, SCHRODER A. Prope-ller slipstream development:AIAA-2007-3810[R]. Reston, VA:AIAA, 2007.
[9] 杨小川, 王运涛, 王光学, 等.螺旋桨非定常滑流的高效数值模拟研究[J]. 空气动力学学报, 2014, 32(3):289-294. YANG X C, WANG Y T, WANG G X, et al. Numerical simulation of unsteady propeller slipstream[J]. Acta Aerodynamica Sinica, 2014, 32(3):289-294(in Chinese).
[10] 许和勇, 叶正寅. 螺旋桨非定常滑流数值模拟[J]. 航空动力学报, 2011, 26(1):148-153. XU H Y, YE Z Y. Numerical simulation of unsteady propeller slipstream[J]. Journal of Aerospace Power, 2011, 26(1):148-153(in Chinese).
[11] 张刘, 白俊强, 李华星, 等. 螺旋桨滑流与机翼之间气动干扰影响研究[J]. 航空计算技术, 2012, 42(2):87-92. ZHANG L, BAI J Q, LI H X, et al. Research on aerodynamic interference for propeller slipstream over the wing[J]. Aeronautical Computing Technique, 2012, 42(2):87-92(in Chinese).
[12] 程晓亮, 李杰. 螺旋桨滑流对机翼气动特性影响的方法研究[J]. 科学技术与工程, 2011, 11(14):3229-3235. CHENG X L, LI J. Unsteady computational method for the propeller/wing interaction[J]. Science Technology and Engineering, 2011, 11(14):3229-3235(in Chinese).
[13] 龚晓亮, 杨永, 夏贞锋. 螺旋桨滑流与机翼气动干扰数值模拟研究[J]. 航空计算技术, 2012, 42(1):76-79. GONG X L, YANG Y, XIA Z F. Numerical simulation of interaction effects of propeller and wing[J]. Aeronautical Computing Technique, 2012, 42(1):76-79(in Chinese).
[14] 张小莉, 张一帆. 螺旋桨滑流对增升装置气动特性影响研究[J]. 航空计算技术, 2011, 41(4):1-3. ZHANG X L, ZHANG Y F. Research on interaction of propeller and high-lift system[J]. Aeronautical Computing Technique, 2011, 41(4):1-3(in Chinese).
[15] 夏贞锋, 杨永. 螺旋桨滑流与机翼气动干扰的非定常数值模拟[J]. 航空学报, 2011, 32(7):1195-1201. XIA Z F, YANG Y. Unsteady numerical simulation of interaction effects of propeller and wing[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(7):1195-1201(in Chinese).
[16] 任晓峰, 段卓毅, 魏剑龙. 滑流对飞机纵向静稳定性影响的数值模拟[J]. 空气动力学学报, 2017, 35(3):383-391. REN X F, DUAN Z Y, WEI J L. Numerical simulation of propeller slipstream effects on pitching static stability[J]. Acta Aerodynamica Sinica, 2017, 35(3):383-391(in Chinese).
[17] 王伟, 段卓毅, 耿建中, 等. 考虑螺旋桨滑流影响的双发涡桨飞机气动特性研究[J]. 西北工业大学学报, 2017, 35(6):1105-1111. WANG W, DUAN Z Y, GENG J Z, et al. Aerodynamics analysis of twin-turboprop aircraft with propeller slipstream effects considered[J]. Journal of Northwestern Polytechnical University, 2017, 35(6):1105-1111(in Chinese).
[18] BOUSQUET J, GARDAREIN P. Improvements on com-putations of high speed propeller unsteady aerodynamics[J]. Aerospace Science and Technology, 2003, 7(6):465-472.
[19] STUERMER A. Unsteady CFD simulations of propeller installation effects:AIAA-2006-4969[R]. Reston, VA:AIAA, 2006.
[20] STUERMER A. Unsteady CFD simulations of contra-rotating propeller propulsion systems:AIAA-2008-5218[R]. Reston, VA:AIAA, 2008.
[21] ROOSENBOOM E, STUERMER A, SCHRODER A. Comparison of PIV measurements with unsteady RANS calculations in a propeller slipstream:AIAA-2009-3626[R]. Reston, VA:AIAA, 2009.
[22] 周铸, 黄江涛, 黄勇, 等. CFD技术在航空工程领域的应用、挑战与发展[J]. 航空学报, 2017, 38(3):020891. ZHOU Z, HUANG J T, HUANG Y, et al. CFD technology in aeronautic engineering field:Applications, challenges and development[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(3):020891(in Chinese).
[23] 蒋晓莉, 杨士普. 螺旋桨飞机滑流机理分析[J]. 民用航空飞机设计与研究, 2009(4):34-38. JIANG X L, YANG S P. Analysis of propeller aircraft slipstream mechanism[J]. Civil Aircraft Design and Research, 2009(4):34-38(in Chinese).
Outlines

/