Fluid Mechanics and Flight Mechanics

Interference effects and flow mechanism of propeller slipstream for turboprop aircraft

  • ZHAO Shuai ,
  • DUAN Zhuoyi ,
  • LI Jie ,
  • QIAN Ruizhan ,
  • XU Ruifei
Expand
  • 1. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
    2. AVIC The First Aircraft Institute, Xi'an 710089, China

Received date: 2018-06-21

  Revised date: 2018-07-17

  Online published: 2018-08-16

Supported by

Provincial/Ministerial Level Project

Abstract

The interference of the propeller slipstream on the aircraft components is one of the difficult points in aerodynamic design of turboprops. In the present study, the influence of propeller slipstream on wing, horizontal tail and vertical tail and its flow mechanism for a twin-engine turboprop regional airliner are investigated through numerical simulations. The computations are performed via the unsteady numerical method based on the dynamic patched grid. The calculated aerodynamic forces and surface pressure distributions agree well with the experimental data. The results indicate that under the influence of slipstream, the lift and drag of the whole plane have increased while the lift-drag ratio and the longitudinal static stability are reduced. What's more, the plane even suffers rolling and yawing moment in the non-sideslip condition. There are significant differences in the effect of slipstream on the separation of wing surfaces at different spanwise positions. On the downward side of the propeller, the flow separation is effectively suppressed because of the decreases in the local angle of attack caused by the swirl of the slipstream and a strong flow acceleration. However, on the upward side of the propeller, there is no significant improvement of the flow separation due to an increase in the local angle of attack and a slow flow speed. The slipstream has no effect on local dynamic pressure around the horizontal tail of the reference aircraft at low and moderate angles of attack, but it increases the downwash gradient, resulting in the reduction of the tail efficiency. The side force and the yawing moment of the vertical tail are caused by the sidewash of the slipstream which is closely related to the asymmetric wing-lift distribution.

Cite this article

ZHAO Shuai , DUAN Zhuoyi , LI Jie , QIAN Ruizhan , XU Ruifei . Interference effects and flow mechanism of propeller slipstream for turboprop aircraft[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019 , 40(4) : 122469 -122469 . DOI: 10.7527/S1000-6893.2018.22469

References

[1] 刘毅, 赵晓霞, 欧阳绍修. 螺旋桨飞机升力失速特性研究[J]. 空气动力学学报, 2015, 33(5):655-660. LIU Y, ZHAO X X, OUYANG S X. Investigation on lift stall characteristics of propeller aircraft[J]. Acta Aerodynamica Sinica, 2015, 33(5):655-660(in Chinese).
[2] 任庆祝, 赵晓霞, 刘毅, 等. 螺旋桨飞机滑流对全机气动特性影响的试验研究[J]. 科学技术与工程, 2015, 15(15):214-217. REN Q Z, ZHAO X X, LIU Y, et al. The experimental investigation of slipstream effect on propeller-driven airplane[J]. Science Technology and Engineering, 2015, 15(15):214-217(in Chinese).
[3] BORNE P V D, HENGST J V. Investigation of propeller slipstream effects on the Fokker 50 through in-flight pressure measurements:AIAA-1990-3084[R]. Reston, VA:AIAA, 1990.
[4] MOENS F, GARDAREIN P. Numerical simulation of the propeller/wing interactions for transport aircraft:AIAA-2001-2404[R]. Reston, VA:AIAA, 2001.
[5] STUERMERA. Unsteady CFD simulations of propeller installation effects:AIAA-2006-4969[R]. Reston, VA:AIAA, 2006.
[6] SCHROIJENM, VELDHUIS L, SLINGERLADN R. Propeller empennage interaction effects on vertical tail design of multiengine aircraft[J]. Journal of Aircraft, 2010, 47(4):1133-1140.
[7] ROOSENBOOM E, STÜRMER A, SCHRÖDER A. Advanced experimental and numerical validation and analysis of propeller slipstream flows[J]. Journal of Aircraft, 2010, 47(1):284-291.
[8] ROOSENBOOME, STÜRMER A, SCHRÖDER A. Comparison of PIV measurements with unsteady RANS calculation in a propeller slipstream:AIAA-2009-3626[R]. Reston, VA:AIAA, 2009.
[9] 李博, 梁德旺, 黄国平. 基于等效盘模型的滑流对涡桨飞机气动性能的影响[J]. 航空学报, 2008, 29(4):845-852. LI B, LIANG D W, HUANG G P. Propeller slipstream effects on aerodynamic performance of turbo-prop airplane based on equivalent actuator disk model[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(4):845-852(in Chinese).
[10] 许和勇, 叶正寅. 螺旋桨非定常滑流数值模拟[J]. 航空动力学报, 2011, 26(1):148-153. XU H Y, YE Z Y. Numerical simulation of unsteady propeller slipstream[J]. Journal of Aerospace Power, 2011, 26(1):148-153(in Chinese).
[11] 杨小川, 王运涛, 王光学, 等. 螺旋桨非定常滑流的高效数值模拟研究[J]. 空气动力学学报, 2014, 33(3):289-294. YANG X C, WANG Y T, WANG G X, et al. Numerical simulation of unsteady propeller slipstream[J]. Acta Aerodynamica Sinica, 2014, 33(3):289-294(in Chinese).
[12] 麻蓉, 高飞飞, 颜洪, 等. 螺旋桨飞机滑流非定常数值模拟研究[J]. 航空计算技术, 2016, 46(1):27-30. MA R, GAO F F, YAN H, et al. Research on unsteady numerical simulation of propeller aircraft slipstream[J]. Aeronautical Computing Technique, 2016, 46(1):27-30(in Chinese).
[13] 段中喆, 刘沛清. 某型螺旋桨滑流对机翼气动性能影响的数值研究[J]. 应用基础与工程科学学报, 2012, 20(增刊):215-225. DUAN Z J, LIU P Q. Numerical researches on the aerodynamic characteristics of a wing influenced by the slipstream of propellers[J]. Journal of Basic Science and Engineering, 2012, 20(Supplement):215-225(in Chinese).
[14] THOMS J, WALTERS R, REU T, et al. A patched grid algorithm for complex configurations directed towards the F/A-18 aircraft:AIAA-1989-0121[R]. Reston, VA:AIAA, 1989.
[15] 夏贞锋, 杨永. 螺旋桨滑流与机翼气动干扰的非定常数值模拟[J]. 航空学报, 2011, 32(7):1195-1201. XIA Z F, YANG Y. Unsteady numerical simulation of interaction effects of propeller and wing[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(7):1195-1201(in Chinese).
[16] 张刘, 白俊强, 李华星, 等. 螺旋桨滑流与机翼之间气动干扰影响研究[J]. 航空计算技术, 2012, 42(2):87-91. ZHANG L, BAI J Q, LI H X, et al. Research on aerodynamic interference for propeller slipstream over the wing[J]. Aeronautical Computing Technique, 2012, 42(2):87-91(in Chinese).
[17] 徐家宽, 白俊强, 黄江涛, 等. 考虑螺旋桨滑流影响的机翼气动优化设计[J]. 航空学报, 2014, 35(11):2910-2920. XU J K, BAI J Q, HUANG J T, et al. Aerodynamic op timization design of wing under the interaction of propeller slipstream[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(11):2910-2920(in Chinese).
[18] BOUQUET T, VOS R. Modeling the propeller slipstream effect on lift and pitching moment:AIAA-2017-0236[R]. Reston, VA:AIAA, 2017.
[19] OBERT E D. 运输类飞机的空气动力设计[M]. 顾诵芬, 吴兴世, 杨新军, 译. 上海:上海交通大学出版社, 2010:406-407. OBERT E D. Aerodynamic design of transport aircraft[M]. GU S F, WU X S, YANG X J, translated. Shanghai:Shanghai Jiao Tong University Press, 2010:406-407(in Chinese).
[20] 任晓峰, 段卓毅, 魏剑龙. 滑流对飞机纵向静稳定性影响的数值模拟研究[J]. 空气动力学学报, 2017, 35(3):383-391. REN X F, DUAN Z Y, WEI J L. Numerical simulation of propeller slipstream effects on pitching static stability[J]. Acta Aerodynamica Sinica, 2017, 35(3):383-391(in Chinese).
[21] 王伟, 段卓毅, 耿建中, 等. 考虑螺旋桨滑流影响的双发涡桨飞机气动特性研究[J]. 西北工业大学学报, 2017, 35(6):1105-1111. WANG W, DUAN Z Y, GENG J Z, et al. Aerodynamics analysis of twin-turboprop aircraft with propeller slipstream effects considered[J]. Journal of Northwestern Polytechnical University, 2017, 35(6):1105-1111(in Chinese).
Outlines

/