Fluid Mechanics and Flight Mechanics

Design of supercritical natural laminar flow wing and its boundary layer transition wind tunnel test based on TSP technique

  • ZHANG Yanjun ,
  • DUAN Zhuoyi ,
  • LEI Wutao ,
  • BAI Junqiang ,
  • XU Jiakuan
Expand
  • 1. AVIC the First Aircraft Institute, Xi'an 710089, China;
    2. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2018-06-07

  Revised date: 2018-06-25

  Online published: 2018-08-16

Abstract

To achieve the green aviation goal of energy conservation and emission reduction, laminar flow design technology has become the hot research area for aircraft designers. For transonic airliners, supercritical natural laminar flow wing design technology will significantly reduce the flight drag, improve aerodynamic performance, and decrease fuel consumption and pollutant emissions. Based on the high-precision boundary layer transition prediction technique, the airfoil optimization design system is applied to design the supercritical natural laminar flow airfoils. Then the airfoils are arranged rationally to form the supercritical natural laminar flow wing. Numerical simulations of the supercritical natural laminar flow wing show satisfactory laminar flow characteristics. Then, a model with ratio of 1:10.4 is used to test the boundary layer transition in high speed and low turbulence wind tunnel in Netherland. The Temperature Sensitive Paint (TSP) technique is used to photograph laminar-turbulent area distribution at different Mach numbers, Reynolds numbers and angels of attack. At last, the boundary layer transition characteristics of the supercritical natural laminar flow wing are discussed, and the key factors of the wing design are summarized. In addition, the model can also be used to verify the accuracy of the boundary layer transition prediction technique for supercritical and high Reynolds numbers condition.

Cite this article

ZHANG Yanjun , DUAN Zhuoyi , LEI Wutao , BAI Junqiang , XU Jiakuan . Design of supercritical natural laminar flow wing and its boundary layer transition wind tunnel test based on TSP technique[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019 , 40(4) : 122429 -122429 . DOI: 10.7527/S1000-6893.2018.22429

References

[1] HOLMES B J, OBARA C J. Observations and implications of natural laminar flow on practical airplane surfaces[J]. Journal of Aircraft, 1983, 20(12):993-1006.
[2] KHALID M, JONES D J. A summary of transonic natural laminar flow airfoil development at NAE:NRC No. 31608[R]. Ottawa:NRC, 1990.
[3] LEEJ D, JAMESON A. Natural-laminar-flow airfoil and wing design by adjoint method and automatic transition prediction:AIAA-2009-0897[R]. Reston, VA:AIAA, 2009.
[4] KRUSE M, WUNDERLICH T, HEINRICH L. A conceptual study of a transonic NLF transport aircraft with forward swept wings:AIAA-2012-3208[R]. Reston, VA:AIAA, 2012.
[5] FUJINO M, YOSHIZAKI Y, KAWAMURA Y. Natural-laminar-flow airfoil development for a ligh tweight business jet[J]. Journal of Aircraft, 2003, 40(4):609-615.
[6] FUJINO M. Design and development of the Honda jet[J]. Journal of Aircraft, 2005, 42(3):755-764.
[7] FAUCI R, NICOLÌ A, IMPERATORE B, et al. Wind tunnel tests of a transonic natural laminar flow wing:AIAA-2006-3638[R]. Reston, VA:AIAA, 2006.
[8] CELLA U, QUAGLIARELLA D, DONELLI R, et al. Design and test of the UW-5006 transonic natural-laminar-flow wing[J]. Journal of Aircraft, 2010, 47(3):783-795.
[9] EPPINK J, WLEZIEN R. Data analysis for the NASA/Boeing hybrid laminar flow control crossflow experiment:AIAA-2011-3879[R]. Reston, VA:AIAA, 2011.
[10] 乔志德. 自然层流超临界翼型的设计研究[J]. 流体力学实验与测量, 1998(4):23-30. QIAO Z D. Design of supercritical airfoils with natural laminar flow[J]. Experiments and Measurements in Fluid Mechanics, 1998(4):23-30(in Chinese).
[11] 王菲, 额日其太, 王强, 等. 后掠翼混合层流控制机制的实验[J]. 航空动力学报, 2010, 25(4):918-924. WANG F, E R Q T, WANG Q, et al. The experiment of mechanism in hybrid laminar flow control[J]. Journal of Aerospace Power, 2010, 25(4):918-924(in Chinese).
[12] 孙智伟, 白俊强, 高正红, 等. 现代超临界翼型设计及其风洞试验[J]. 航空学报, 2015, 36(3):804-818. SUN Z W, BAI J Q, GAO Z H, et al. Design and wind tunnel test investigation of the modern supercritical airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(3):804-818(in Chinese).
[13] HUANG J T, GAOZ H, ZHAO K, et al. Robust design of supercritical wing aerodynamic optimization considering fuselage interfering[J]. Chinese Journal of Aeronautics, 2010, 23(5):523-528.
[14] LI J, GAO Z H, HUANG J T, et al. Robust design of NLF airfoils[J]. Chinese Journal of Aeronautics, 2013, 26(2):309-318.
[15] 乔志德. 翼型的选择与设计[M]//方宝瑞. 飞机气动布局设计. 北京:航空工业出版社, 1997:499-540. QIAO Z D. Design and chosen of the airfoils[M]//FANG B R. Aircraft aerodynamic configuration design. Beijing:Aviation Industry Press, 1997:499-540(in Chinese).
[16] 乔志德, 赵文华, 李育斌, 等. 超临界自然层流冀型NPU-L72513的风洞试验研究[J]. 气动实验与测量控制, 1993, 7(2):40-45. QIAO Z D, ZHAO W H, LI Y B. The transonic wind tunnel test research for the supercritical natural laminar airfoil NPU-L72513[J]. Aerodynamic Experiment and Measurement & Control, 1993, 7(2):40-45(in Chinese).
[17] ZHANG Y F, FANG X M, CHEN H X, et al. Supercritical natural laminar flow airfoil optimization for regional aircraft wing design[J]. Aerospace Science and Technology, 2015, 43:152-164.
[18] HAN Z H, CHEN J, ZHANG K S, et al. Aerodynamic shape optimication of natural-flow wing using surrogate-based approach[J]. AIAA Journal, 2018, 56(7):2579-2593.
[19] MENTER F R, LANGTRY R B, LIKKI S R, et al. A correlation-based transition model using local variables-Part I:Model formulation[J]. Journal of Turbomchinery, 2006, 128(3):413-422.
[20] LANGTRY R B, MENTER F R, LIKKI S R, et al. A correlation-based transition model using local variables-part Ⅱ:Test cases and industrial applications[J]. Journal of Turbomachinery, 2006, 128(3):423-434.
[21] LANGTRY R B. A correlation-based transition model using local variables for unstructured parallelized CFDcodes[D]. Stuttgart:Universität Stuttgart, 2006.
[22] LANGTRY R B, MENTER F R. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes[J]. AIAA Journal, 2009, 47(12):2894-2906.
[23] SMITHA M O, GAMBERONI N. Transition, pressuregradient, and stability theory:ES-26388[R]. Long Beach:Douglas Aircraft Company, 1956.
[24] VAN INGEN J L. A suggested semi-empirical method for the calculation of the boundary layer transition region:VTH-7[R]. Delft:Delft University of Technology, 1956.
[25] GLEYZES C, COUSTEIX J, BONNET J L. A calculation method of leading edge separation bubbles[M]//CEBECI T. Numerical and physical aspects of aerodynamic flows Ⅱ. New York:Springer-Verlag, 1983:173-192.
[26] DRELA M, GILES M B. Viscous-inviscidanalysis of transonic and low-Reynolds number airfoils[J]. AIAA Journal, 1987, 25(10):1347-1355.
[27] CODER J G, MAUGHMER M D. A CFD-compatible transition model using an amplification factor transport equation:AIAA-2013-0253[R]. Reston, VA:AIAA, 2013.
[28] CODER J G, MAUGHMER M D. Computational fluid dynamics compatible transition modeling using an amplification factor transport equation[J]. AIAA Journal, 2014, 52(11):2506-2512.
[29] MENTERF R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8):1598-1605.
[30] 徐家宽, 白俊强. 基于边界层相似性解的放大因子输运模型[J]. 航空学报, 2016, 37(4):1103-1113. XU J K, BAI J Q. Amplification factor transport model based on boundary layer similarity solution[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(4):1103-1113(in Chinese).
[31] 尚金奎, 衷洪杰, 赵民, 等. TSP转捩探测技术在民机风洞试验中的应用研究[J]. 空气动力学学报, 2016, 34(3):341-353. SHANG J K, ZHONG H J, ZHAO M, et al. Application of TSP transition detection technique for a civil aircraft[J]. Acta Aerodynamica Sinica, 2016, 34(3):341-353(in Chinese).
[32] ZHU Y D, CHEN X, WU J Z, et al. Aerodynamic heating in transitional hypersonic boundary layers:Role of second-mode instability[J]. Physics of Fluid, 2018, 30(1):011701.
[33] MACK L M. Transition prediction and linear stability theory[C]//In AGARD Laminar-Turbulent Transition 22 p(SEE N78-1431605-34). Paris:AGARD, 1977.
[34] MASELAND J E J, LABAN M, VAN DER VEN H, et al. Development of CFD-based interference models for the DNW-HST transonic wind-tunnel:AIAA-2006-3639[R]. Reston, VA:AIAA, 2006.
[35] ELSENAARA, PHILIPSEN I, VAN DER POEL M. DNW-HST(High-Speed Tunnel) 50-year anniversary:AIAA-2010-0575[R]. Reston, VA:AIAA, 2010.
[36] 尚金奎, 王鹏, 陈柳生, 等. TSP技术在转捩检测中的应用研究[J]. 空气动力学学报, 2015, 33(4):464-469. SHANG J K, WANG P, CHEN L S, et al. Application research of TSP technique in transition detection[J]. Acta Aerodynamica Sinica, 2015, 33(4):464-469(in Chinese).
Outlines

/