Solid Mechanics and Vehicle Conceptual Design

Test technique for multi-load combined strength of hypersonic vehicle structure under complex loading environment

  • ZOU Xuefeng ,
  • GUO Dingwen ,
  • PAN Kai ,
  • QU Chao ,
  • TAO Yongqiang ,
  • ZHANG Xudong
Expand
  • 1. Aviation Industry Aircraft Strength Research Institute, Xi'an 710065, China;
    2. Aviation Science and Technology Key Laboratory of Aeronautical Acoustics and Vibration Intensity, Xi'an 710065, China;
    3. Beijing Aerospace Technology Institute, Beijing 100074, China

Received date: 2018-05-14

  Revised date: 2018-06-08

  Online published: 2018-08-13

Abstract

Aimed at the urgent requirements of the combined load test for current hypersonic vehicle structures, a multi-load combined test design considering aerodynamic force, high temperature, acoustic, and mechanical vibration is carried out. First, a multi-system integration method is proposed, and the decoupling method and the control strategy are proposed for multi-load combined loadings. Then, based on the progressive wave tube, a multi-load combined platform is built. Moreover, the key factors that affect the performance of the platform are analyzed and the corresponding solutions are provided. Finally, a multi-field test combined with the aerodynamic force/high temperature/acoustic/mechanical vibration of a rudder surface component is completed based on this test platform, obtaining the time-domain and frequency-domain characteristics of the responses such as strain, acceleration and displacement. The test results show that the response level of the structure in a combined load environment is relatively high and the structure is more prone to damage. The feasibility and effectiveness of the multi-load combined test technique are verified through this test, indicating a powerful technical support for the verification of the ground strength of the hypersonic vehicle structure in a complex load environment.

Cite this article

ZOU Xuefeng , GUO Dingwen , PAN Kai , QU Chao , TAO Yongqiang , ZHANG Xudong . Test technique for multi-load combined strength of hypersonic vehicle structure under complex loading environment[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018 , 39(12) : 222326 -222326 . DOI: 10.7527/S1000-6893.2018.22326

References

[1] BERTIN J J, CUMMINGS R M. Fifty years of hypersonic:Where we've been and where we're going[J]. Progress in Aerospace Sciences, 2003, 39(6-7):511-536.
[2] 杨炳渊, 史晓鸣, 梁强. 高超声速有翼导弹多场耦合动力学的研究和进展[J]. 强度与环境, 2008, 35(6):55-62. YANG B Y, SHI X M, LIANG Q. Investigation and development of the multi-physics coupling dynamics on the hypersonic winged missiles[J]. Structure & Environment Engineering, 2008, 35(6):55-62(in Chinese).
[3] 许斌, 梅睿, 马建敏, 等. 高速柔性飞行器耦合动力学研究进展[J]. 飞行力学, 2016, 34(3):1-6. XU B, MEI R, MA J M, et al. Development in coupling dynamics of flexible high-speed aircraft[J]. Flight Dynamics, 2016, 34(3):1-6(in Chinese).
[4] 谭光辉, 李秋彦, 邓俊. 热环境下结构固有振动特性试验及分析[J]. 航空学报, 2016, 37(1):32-37. TAN G H, LI Q Y, DENG J. Test and analysis of natural modal characteristics of a wing model with thermal effect[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1):32-37(in Chinese).
[5] 沙云东, 魏静, 高志军, 等. 热声载荷作用下薄壁结构的非线性响应特性[J]. 航空学报, 2013, 34(6):1336-1346. SHA Y D, WEI J, GAO Z J, et al. Nonlinear response characteristics of thin-walled structure under thermo-acoustic loadings[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(6):1336-1346(in Chinese).
[6] XU G H, HE W, SHEN R J. Design of temperature testing system in multi-parameter combined environmental test[J]. Applied Mechanics and Materials, 2012, 157(158):127-131.
[7] 孟光, 周徐斌, 苗军. 航天重大工程中的力学问题[J]. 力学进展, 2016, 46(6):267-322. MENG G, ZHOU X B, MIAO J. Mechanical problems in momentous projects of aerospace engineering[J]. Advances in Mechanics, 2016, 46(6):267-322(in Chinese).
[8] 吴建国, 李海波, 张琪. 综合离心环境试验技术研究进展[J]. 强度与环境, 2014, 41(1):1-9. WU J G, LI H B, ZHANG Q. Advances in synthesis centrifugal environment test[J]. Structure & Environment Engineering, 2014, 41(1):1-9(in Chinese).
[9] 军用飞机结构强度规范:GJB 67A. 8-2008[S].北京:中国标准出版社, 2008. Military airplane structural strength specification:GJB 67A. 8-2008[S]. Beijing:Standards Press of China, 2008. (in Chinese).
[10] BLEVINS R D, BOFILIOS D, HOLEHOUSE I, et al. Thermo-vibro-acoustic loads and fatigue of hypersonic flight vehicle structure:AFRL-RB-WP-TR-2009-3139[R]. OH:Wright Patterson AFB, 2009.
[11] BRIAN Z. Predictive capability for hypersonic structural response and life-prediction:Phase 2-Details design of hypersonic cruise vehicle hot-structure:AFRL-RQ-WP-TR-2012-0280[R]. Seal Beach, CA:Boeing Company, 2012.
[12] BLADES E. L, MISKOVISH R S, NUCCI M. Towards a coupled mutliphysics analysis capability for hypersonic vehicle structures:AIAA-2011-1962[R]. Reston, VA:AIAA, 2011.
[13] ANDREW K M, MARC P M. Thermal reduced order model adaptation to aero-thermo-structural interactions:AIAA-2014-049[R]. Reston, VA:AIAA, 2014.
[14] ANDREAS Ö. Materials with complex behavior:Modeling, simulation, testing, and application[M]. Berlin Heidelberg:Springer-Verlag, 2010:193-211.
[15] BROWN A M. Temperature dependent modal test/analysis correlation of X34 Fastrac composite rocket nozzle:AIAA-2000-1741[R]. Reston, VA:AIAA, 2000.
[16] GLASS D E. Airframe technology develops for next generation launch vehicles:AIAA-2003-6916[R]. Reston, VA:AIAA, 2003.
[17] STEPHENS C A, HUDSON L D, PIAZZA A. Overview of an advanced hypersonic structural concept test program:NASA-2008-561[R]. Washington, D.C.:NASA, 2008.
[18] HUDSON L. Thermal-mechanical testing of hypersonic vehicle structures:NASA-2008-13159[R]. Washington, D.C.:NASA, 2008.
[19] 陈晓冬, 杜向辉, 徐宁. 空空导弹发射装置组合振动试验方法研究[J]. 装备环境工程, 2014, 11(6):153-158. CHEN X D, DU X H, XU N. Research on combined vibration test method for the launcher equipment of airborne missile[J]. Equipment Environment Engineering, 2014, 11(6):153-158(in Chinese).
[20] 吴振强, 张伟, 孔凡金. 热噪声复合环境试验装置研制及其能力验证[J]. 导弹与航天运载技术, 2014, 335(5):60-67. WU Z Q, ZHANG W, KONG F J. Research and capability verification of the test apparatus simulating combined thermal and acoustic environment[J]. Missiles and Space Vehicles, 2014, 335(5):60-67(in Chinese).
[21] 刘磊, 代光月, 曾磊, 等. 气动力/热与结构多场耦合试验模型方案初步设计[J]. 航空学报, 2017, 38(11):221165. LIU L, DAI G Y, ZENG L, et al. Preliminary test model design of fluid-thermal-structural interaction problems[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(11):221165(in Chinese).
[22] 吴大方, 王岳武, 商兰, 等. 1200℃高温环境下板结构热模态试验研究与数值模拟[J]. 航空学报, 2016, 37(6):1861-1875. WU D F, WANG Y W, SHANG L, et al. Test research and numerical simulation on thermal modal of plate structure in 1200℃ high temperature environments[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(6):1861-1875(in Chinese).
[23] GENG Q, LI H, LI Y M. Dynamic and acoustic response of a clamped rectangular platein thermal environments:Experiment and numerical simulation[J]. Acoustical Society of America, 2014, 135(5):2674-2682.
[24] MARLANA N B, ANURAG S, ADAM P, et al. Thermal-acoustic analysis of a metallic integrated thermal protection system structure:AIAA-2010-3121[R]. Reston, VA:AIAA, 2010.
Outlines

/