Fluid Mechanics and Flight Mechanics

Impact of individual ventilation temperature on passenger comfort of commercial aircraft

  • LIU Yudi ,
  • SUN Xuede ,
  • ZHANG Cun ,
  • NAN Guopeng
Expand
  • COMAC Shanghai Aircraft Design and Research Institute, Shanghai 201210, China

Online published: 2018-07-23

Supported by

C919 Commercial Aircraft Program

Abstract

This investigation builds a 3D model of one real commercial aircraft cabin and uses the Computational Fluid Dynamics (CFD) method to calculate the distribution of the temperature and the velocity in cabin under different individual ventilation temperatures. To verify the reliability of the simulation, this paper compares the simulated and measured temperatures around the position of passenger head. Finally, referring to the average skin temperature of human, this research studies the comfort of passengers under different individual ventilation temperatures. The results show that when the individual ventilation temperature changes, the temperature around the passenger head does not vary much. When the individual ventilation temperature increases from 7℃ to 14℃, the temperature around the head of passenger varies less than 0.8℃. Different individual ventilation temperatures mildly affect the average skin temperature and thermal comfort of passengers. When the individual ventilation temperature increases from 7℃ to 14℃, the average skin temperature of the target passenger increases by 0.33℃.

Cite this article

LIU Yudi , SUN Xuede , ZHANG Cun , NAN Guopeng . Impact of individual ventilation temperature on passenger comfort of commercial aircraft[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019 , 40(2) : 522363 -522363 . DOI: 10.7527/S1000-6893.2018.22363

References

[1] 方赵嵩. 机舱个人喷嘴通风系统对人体热舒适的影响研究[D]. 重庆:重庆大学, 2014:24-41, 63-77. FANG Z S. Impacts study of personal nozzle air supply system on human thermal comfort in aircraft cabin[D]. Chongqing:Chongqing University, 2014:24-41, 63-77(in Chinese).
[2] 夏可超. 飞机飞行初始阶段喷嘴送风速度对人体热舒适的影响[D]. 重庆:重庆大学, 2015:25-27. XIA K C. Research on the effect of nozzle air supply velocity on thermal comfort at the initial stage of flight[D]. Chongqing:Chongqing University, 2015:25-27(in Chinese).
[3] 王维, 姜楠, 曹晓东, 等. MD-82飞机客舱环境流场的HWA测量与分析[J]. 天津大学学报(自然科学与工程技术版), 2013, 46(1):2-7. WANG W, JIANG N, CAO X D, et al. HWA measurement and analysis of MD-82 aircraft cabin environment flow field[J]. Journal of Tianjin University (Science and Technology), 2013, 46(1):2-7(in Chinese).
[4] 楼林, 李力涛. 民用飞机客舱空气品质评价体系研究[J]. 科技信息, 2011(22):781-782. LOU L, LI L T. Study of assessment system for cabin air quality of commercial aircraft[J]. Science & Technology Information, 2011(22):781-782(in Chinese).
[5] 王连江, 赵竞全. 飞机座舱温度场数值仿真研究[J].计算机仿真, 2008, 25(5):44-46. WANG L J, ZHAO J Q. Numerical simulation of heat transfer in aircraft cabins[J]. Computer Simulation, 2008, 25(5):44-46(in Chinese).
[6] 张大林, 昂海松. 飞机座舱内空气速度和温度分布的数值模拟[J]. 南京航空航天大学学报, 2002, 34(5):484-487. ZHANG D L, ANG H S. Numerical simulation of air distribution in an aircraft cabin[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2002, 34(5):484-487(in Chinese).
[7] GARNER R, WONG K, ERICSON S. CFD validation for contaminant transport in aircraft cabin ventilation flow fields[C]//Proceedings of Annual SAFE Symposium. Washington, D.C.:Department of Transportation Federal Aviation Administration, 2003:248-253.
[8] ABOOSAIDI F, WARFIELD M, CHOUDHURY. Computational fluid dynamics applications in airplane cabin ventilation system design[C]//Proceedings of Society of Automotive Engineers. Warrendale, PA:SAE International, 1991:249-258.
[9] DECHOW M. Concentrations of selected contaminants in cabin air of airbus aircrafts[J]. Chemosphere, 1991, 35(1-2):21-31.
[10] WATERS M, BLOOM T, GRAJEWSKI B. Measurements of indoor air quality on commercial transport aircraft[C]//Proceedings of Indoor Air, 2002:782-787.
[11] 李鹏辉. 大型商用客机舱内气流组织的研究[D]. 大连:大连理工大学, 2010:1-7. LI P H. Various airflow distribution for commercial aircraft cabins[D]. Dalian:Dalian University of Technology, 2010:1-7(in Chinese).
[12] WANG A, ZHANG Y, TOPMILLER J, et al. Tracer study of airborne disease transmission in an aircraft cabin mock-up[J]. ASHRAE Transactions, 2006, 112:697-705.
[13] YAN W, ZHANG Y H, SUN Y G, et al. Experimental and CFD study of unsteady airborne pollutant transport within an aircraft cabin mock-up[J]. Building and Environment, 2009, 44(1):34-43.
[14] ZHANG Z, CHEN X, MAZUMDAR S. Experimental and numerical investigation of airflow and contaminant transport in an airliner cabin mock-up[J]. Building and Environment, 2009, 44(1):85-94.
[15] ZHANG T, CHEN Q. Noval air distribution systems for commercial aircraft cabins[J]. Building and Environment, 2007, 42(4):1675-1684.
[16] 朱颖心. 建筑环境学[M]. 北京:中国建筑工业出版社, 2010:97-102. ZHU Y X. Building environment[M]. Beijing:China Architecture & Building Press, 2010:97-102(in Chinese).
[17] 林家泉, 李弯弯. 基于PMV-PPD的地面空调最佳送风速度[J]. 航空学报, 2017, 38(8):72-79. LIN J Q, LI W W. Best wind speed of ground air conditioning system based on PMV-PPD[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(8):72-79(in Chinese).
[18] 吕永达, 霍仲厚. 特殊环境生理学[M]. 北京:军事医学科学出版社, 2003:79-81, 89-96. LYU Y D, HUO Z H. Special environmental physiology[M]. Beijing:Military Medical Science Press, 2003:79-81, 89-96(in Chinese).
[19] 刘蔚巍. 人体热舒适客观评价指标研究[D]. 上海:上海交通大学, 2007:79, 119. LIU W W. Study on objective evaluation index of human thermal comfort[D]. Shanghai:Shanghai Jiao Tong University, 2007:79, 119(in Chinese).
[20] 段然. 飞机座舱气流组织的数值模拟中网格选用的策略研究[D]. 天津:天津大学, 2014:28-32. DUAN R. Strategy of mesh choice in numerical simulation in predicting air distribution in an aircraft cabin[D]. Tianjin:Tianjin University, 2014:28-32(in Chinese).
[21] ASHRAE. Air quality within commercial aircraft:ASHRAE Standard 161[S]. Atlanta, GA:ASHRAE, 2007:6.
Outlines

/