Material Engineering and Mechanical Manufacturing

An ultrasonic method of evaluation of TC4 primary α-phase grain size towards mapping monotonicity

  • DONG Jinlong ,
  • CHEN Hao ,
  • CHEN Xi ,
  • WU Guanhua ,
  • ZHOU Zhenggan ,
  • LI Changyong
Expand
  • 1. Key Laboratory of Nondestructive Test of Ministry of Education, Nanchang Hangkong University, Nanchang 330063, China;
    2. School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China;
    3. AECC Shenyang Liming Aero-Engine Co., LTD. Shenyang 110043, China

Received date: 2018-05-22

  Revised date: 2018-06-11

  Online published: 2018-07-23

Supported by

National Natural Science Foundation of China (61772255);Jiangxi Innovation Drives "5511" Project Advantage Discipline Innovation Team (20165BCB19007);Superior Science and Technology Innovation Team Project of Jiangxi Province (20152BCB24004);Non-Destructive Testing Technology Ministry of Education Key Laboratory (Nanchang Hangkong University) Open Fund (ZD201529004); Science and Technology Agency Science and Technology Project of Jiangxi province (20161BBG70047,20161BAB202038);Key Laboratory of Image Processing and Pattern Recognition in Jiangxi Province Open Fund (ET201604246)

Abstract

The addition of complex information in the microstructure of the tested object increases the difficulty to establish an effective evaluation curve with minimized errors. To solve this problem, this paper proposes a monotonicity-oriented method of ultrasonic evaluation of α-phase grain size of TC4 titanium alloy. Based on the correlation measure, effective parameters are selected from multiple ultrasonic parameters, and the mapping function is reduced to a single-dimensional parameter and normalized to fit the primary α phase once, constructing a optimization problem of reaching maximized monotonicity where the sample points of feature parameter are successively positive or negative. The problem is solved with the self-adaptive differential evolution (SADE) algorithm to find the most ideal mapping function and fitting function coefficient, finally establishing the monotonicity based on multi-parameter model for ultrasonic evaluation. The experimental results show that the evaluation effect of the established model is more significant than that of the error-oriented evaluation model because it considers the importance of monotonicity. Compared with the single-parameter ultrasonic velocity method, the attenuation coefficient method and the nonlinear coefficient method, the established model contains smaller error, better monotonicity, more stable performance and higher accuracy of evaluation.

Cite this article

DONG Jinlong , CHEN Hao , CHEN Xi , WU Guanhua , ZHOU Zhenggan , LI Changyong . An ultrasonic method of evaluation of TC4 primary α-phase grain size towards mapping monotonicity[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018 , 39(12) : 422360 -422360 . DOI: 10.7527/S1000-6893.2018.22360

References

[1] 李重河, 朱明, 王宁, 等. 钛合金在飞机上的应用[J]. 稀有金属, 2009, 33(1):84-91. LI C H, ZHU M, WANG N, et al. Application of titanium alloy in airpane[J]. Chinese Journal of Rare Metals, 2009, 33(1):84-91(in Chinese).
[2] HRABE N, GNAUPEL-HEROLD T, QUINN T. Fatigue properties of a titanium alloy (Ti-6Al-4V) fabricated via electron beam melting (EBM):Effects of internal defects and residual stress[J]. International Journal of Fatigue, 2017, 94:202-210.
[3] 金和喜, 魏克湘, 李建明, 等. 航空用钛合金研究进展[J]. 中国有色金属学报, 2015, 25(2):280-292. JIN H X, WEI K X, LI J M, et al. Research development of titanium alloy in aerospace industry[J]. The Chinese Journal of Nonferrous Metals, 2015, 25(2):280-292(in Chinese).
[4] LIU W Y, LIN Y H, CHEN Y H, et al. Effect of different heat treatments on microstructure and mechanical properties of Ti6Al4V titanium alloy[J]. Rare Metal Materials and Engineering, 2017, 46(3):634-639.
[5] 曹京霞, 黄旭, 弭光宝, 等. Ti-V-Cr系阻燃钛合金应用研究进展[J]. 航空材料学报, 2014, 34(4):92-97. CAO J X, HUANG X, MI G B, et al. Research progress on application application technique of Ti-V-Cr burn resistant titanium alloys[J]. Journal of Aeronautical Materials, 2014, 34(4):92-97(in Chinese).
[6] 郭良刚, 樊晓光, 余高峰, 等. 钛合金棒材一次热加工的微观组织控制技术研究进展[J]. 航空学报, 2016, 29(1):30-40. GUO L G, FAN X G, YU G F, et al. Microstructure control techniques in primary hot working of titanium alloy bars:A review[J]. Acta Aeronautica et Astronatica, 2016, 29(1):30-40(in Chinese).
[7] GAO X X, ZENG W D, ZHAO Q Y, et al. Acquisition of recrystallization information using optical metallography in a metastable beta titanium alloy[J]. Journal of Alloys and Compounds, 2017, 727:346-352.
[8] CHEN Y W, TSAI Y T, TUNG P Y, et al. Phase quantification in low carbon Nb-Mo bearing steel by electron backscatter diffraction technique coupled with kernel average misorientation[J]. Materials Characterization, 2018, 139:49-58.
[9] CHEN X R, NING F K, HOU J, et al. Dual-frequency ultrasonic treatment on microstructure and mechanical properties of ZK60 magnesium alloy[J]. Ultrasonics Sonochemistry, 2018, 40:433-441.
[10] LI Y, YAN B, LI D, et al. Pulse-modulation eddy current inspection of subsurface corrosion in conductive structures[J]. NDT & E International, 2016, 79:142-149.
[11] GUO B T, ZHANG Z Y, LI R G. Ultrasonic and eddy current non-destructive evaluation for property assessment of 6063 aluminum alloy[J]. NDT & E International, 2018, 93:34-39.
[12] 李凯, 付鹏飞, 唐代斌, 等. TC4钛合金电子束表面造型形貌及近表面组织特征[J]. 航空学报, 2017, 38(12):421361. LI K, FU P F, TANG D B, et al. Topography and near-surface microstructure of TC4 alloy treated by electron beam surfi-sculpt TM[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(12):421361(in Chinese).
[13] 刘建华, 吴量, 李松梅, 等. 草酸钠体系中Ti-10V-2Fe-3Al钛合金阳极氧化膜的制备与表征[J]. 航空学报, 2010, 31(4):852-856. LI J H, WU L, LI S M, et al. Preparation and characterization of anodic oxide film on titanium alloy Ti-10V-2Fe-3Al in sodium oxalate electrolyte[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(4):852-856(in Chinese).
[14] MANDAL T, TINJUM J M, EDIL T B. Non-destructive testing of cementitiously stabilized materials using ultrasonic pulse velocity test[J]. Transportation Geotechnics, 2016, 6:97-107.
[15] DU H L, TURNER J A. Ultrasonic attenuation in pearlitic steel[J]. Ultrasonics, 2014, 54(3):882-887.
[16] AGHAIE-KHAFRI M, HONARVAR F, ZANGANEH S. Characterization of grain size and yield strength in AISI 301 stainless steel using ultrasonic attenuation measurements[J]. Journal of Nondestructive Evaluation, 2012, 31(3):191-196.
[17] LIU Y, SONG Y F, LI X B, et al. Evaluating the reinforcement content and elastic properties of Mg-based composites using dual-mode ultrasonic velocities[J]. Ultrasonics, 2017, 81:167-173.
[18] ZHANG C, LI X B, SONG Y F, et al. Evaluating the grain size in curved components using the ultrasonic attenuation method with diffraction correction[J]. NDT & E International, 2016, 84:20-26.
[19] LOBKIS O I, YANG L, LI J, et al. Ultrasonic backscattering in polycrystals with elongated single phase and duplex microstructures[J]. Ultrasonics, 2012, 52(6):694-705.
[20] MATLACK K H, BRADLEY H A, THIELE S, et al. Nonlinear ultrasonic characterization of precipitation in 17-4PH stainless steel[J]. NDT & E International, 2015, 71:8-15.
[21] ZHOU J Y, XIAO L, QU W Z, et al. Nonlinear Lamb wave based DORT method for detection of fatigue cracks[J]. NDT & E International, 2017, 92:22-29.
[22] CHEN X, WU G H, ZHOU Z G, et al. Study of the relationship between ultrasonic properties and microstructure of nickel-based superalloy GH706[J]. Insight-Non-Destructive Testing and Condition Monitoring, 2017, 59(11):609-614.
[23] 周正干, 刘斯明. 非线性无损检测技术的研究、应用和发展[J]. 机械工程学报, 2011, 47(8):2-11. ZHOU Z G, LIU S M. Nonlinear ultrasonic techniques used in nondestructive testing:A review[J]. Journal of Mechanical Engineering, 2011, 47(8):2-11(in Chinese).
[24] 何伟, 杜小平, 马红征, 等. TC4钛合金相变温度的测定与分析[J]. 理化检验(物理分册), 2014, 50(7):461-464. HE W, DU X P, MA H Z, et al. Measurement and analysis of phase transformation temperature of TC4 titanium alloy[J]. Physical Testing and Chemical Analysis (Part A:Physical Division), 2014, 50(7):461-464(in Chinese).
Outlines

/