Fluid Mechanics and Flight Mechanics

Unsteady aerodynamic characteristics of two-degree-of-freedom pitch/roll coupled motion for a typical vehicle model

  • ZHAO Zhongliang ,
  • YANG Haiyong ,
  • MA Shang ,
  • JIANG Minghua ,
  • LIU Weiliang ,
  • LI Yuping ,
  • WANG Xiaobing ,
  • LI Qian
Expand
  • High Speed Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China

Received date: 2018-05-29

  Revised date: 2018-06-25

  Online published: 2018-07-20

Supported by

National Natural Science Foundation of China (11532016)

Abstract

During high maneuvers at high angle of attack for advanced vehicles, coupled motions of pitch/roll or pitch/yaw may be induced by the interaction between the complex evolution of aerodynamic characteristics and the dramatic change of motion attitudes, displaying the strong multi-degree-of-freedom unsteady aerodynamic characteristics. Therefore, based on the dynamic test devices for two-degree-of-freedom pitch/roll in FL-26 wind tunnel, the unsteady aerodynamic characteristics of the one-degree-of-freedom motion and the two-degree-of-freedom pitch/roll coupled motion for a typical four-generation plane model are investigated. The results show that at around 30° angle of attack, the model occurs lateral deviation with for one-degree-of-freedom roll motion and wing rock of small amplitude. A significant dynamic hysteresis of normal force and pitch moment appears during one-degree-of-freedom pitch oscillation. During two-degree-of-freedom forced pitch/free roll coupled motion and forced pitch/forced-roll coupled motion, the amplitude of the sideslip angle decreases, but there are dynamic hysteresis with multiple hysteresis loops on longitudinal and lateral aerodynamic characteristics, which may induce instability and divergence.

Cite this article

ZHAO Zhongliang , YANG Haiyong , MA Shang , JIANG Minghua , LIU Weiliang , LI Yuping , WANG Xiaobing , LI Qian . Unsteady aerodynamic characteristics of two-degree-of-freedom pitch/roll coupled motion for a typical vehicle model[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018 , 39(12) : 122375 -122375 . DOI: 10.7527/S1000-6893.2018.22375

References

[1] TAMRAT B F. Fighter aircraft agility assessment concepts and their implication on future agile fighter design:AIAA-1988-4400[R]. Reston, VA:AIAA, 1988.
[2] DORN M. Aircraft agility:The science and the opportunities:AIAA-1989-2015[R]. Reston, VA:AIAA, 1989.
[3] CHARLES W A. The X-31 experience:Aerodynamic impediments to post-stall agility:AIAA-1995-0362[R]. Reston, VA:AIAA, 1995.
[4] JOSEPH R C. Historical review of uncommanded lateral-directional motions at transonic conditions:AIAA-2003-0590[R]. Reston, VA:AIAA, 2003.
[5] 常中东. 高超声速滑翔式飞行器气动性能分析与评估[D]. 长沙:国防科技大学, 2011:1-2. CHANG Z D. Analysis and evaluation on aerodynamic performance for hypersonic glide vehicle[D]. Changsha:National University of Science and Technology, 2011:1-2(in Chinese).
[6] ERICKSON G E. High angle-of-attack aerodynamic[J]. Annual Review of Fliud Mechanics, 1995, 27:45-88.
[7] CAPONE F J, HALL R M, OWENS D B. Recommended experimental procedures for evolution of abrupt wing stall characteristics:AIAA-2003-0922[R]. Reston, VA:AIAA, 2003.
[8] GREEN B E, OTT J D. FA-18C to E wing morphing study for the abrupt-wing-stall program:AIAA-2003-0925[R]. Reston, VA:AIAA, 2003.
[9] OWENS D B, CAPONE F J, HALL R M, et al. Transonic free-to-roll analysis of abrupt wing stall on military aircraft[J]. Journal of Aircraft, 2004, 41(3):474-484.
[10] OWENS D B, MCCONNEL J K, BRANDON J M, et al. Transonic free-to-roll analysis of the F-35 joint strike fighter aircraft[J]. Journal of Aircraft, 2006, 43(3):608-615.
[11] LAN C E. Experimental and analytical investigation of transonic limit-cycle oscillations of a flaperon[J]. Journal of Aircraft, 1995, 32(5):905-910.
[12] BRANDON J M. Dynamic stall effects and application to high performance aircraft:AGARD Report No. 776[R]. Paris:AGARD, 1991.
[13] JARRAH M A. Low speech wind tunnel investigation of flow about delta wings, oscillating in pitch to very high angle of attack:AIAA-1989-0295[R]. Reston, VA:AIAA, 1989.
[14] HANFF E S, JENKINS S B. Large-amplitude high-rate roll experiments on a delta and double wing:AIAA-1990-0224[R]. Reston:AIAA, 1990.
[15] ABRAMOV N, GOMAN M. Aircraft dynamics at high incidence flight with account of unsteady aerodynamic effects:AIAA-2004-5274[R]. Reston, VA:AIAA, 2004.
[16] BRANDON J M, FOSTER J V, SHAH G H. Comparison of rolling moment characteristics during roll oscillations for a low and a high aspect ratio configuration:AIAA-2004-5273[R]. Reston, VA:AIAA, 2004.
[17] CUMMINGS R M, MORTON S A, SIEGEL S G, et al. Numerical prediction and wind tunnel experiment for a pitching unmanned combat air vehicle:AIAA-2003-0417[R]. Reston, VA:AIAA, 2003.
[18] SOLTANI M R, BRAGG M B, BRANDON J M. Measurements on an oscillating 70-deg delta wing in subsonic flow[J]. Journal of Aircraft, 1990, 27(3):211-217.
[19] IGNATYEV D I, ZARIPOV K G. Wind tunnel tests for validation of control algorithms at high angles of attack using autonomous aircraft model mounted in 3DOF gimbals:AIAA-2016-3106[R]. Reston, VA:AIAA, 2016.
[20] BERGMANN A, HUEBNER A, LOESER T. Integrated experimental and numerical research on the aerodynamics of unsteady moving aircraft[J]. Progress in Aerospace Sciences, 2008, 44(2):121-137.
[21] ARAUJO-ESTRADA S A, LOWENBERG M H. Evaluation of aircraft model upset behaviour using wind tunnel manoeuvre rig:AIAA-2015-0750[R]. Reston, VA:AIAA, 2015.
[22] 黄达, 李志强, 吴根兴. 飞机平尾偏转对大迎角动态气动特性的影响[J]. 航空学报, 2001, 22(3):198-201. HUANG D, LI Z Q, WU G X. Effects of tailplane turn on the unsteady aerodynamic of the aircraft pitching in very large amplitude[J]. Acta Aeronautica et Astronautica Sinica, 2001, 22(3):198-201(in Chinese).
[23] 魏德宸, 史志伟, 耿玺, 等. 鸭式布局飞行器的翼体摇滚特性风洞试验[J]. 航空学报, 2016, 37(10):3003-3010. WEI D C, SHI Z W, GENG X, et al. Wind tunnel test for wing-body rock of canard configuration aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(10):3003-3010(in Chinese).
[24] 王兵, 邓学蓥, 马宝峰, 等. 前体涡诱导机翼摇滚的人工转捩技术研究[J]. 空气动力学学报, 2010, 28(5):525-535. WANG B, DENG X Y, MA B F, et al. An artificial transition technique applied to wing rock induced by forebody vortex[J]. Acta Aerodynamica Sinica, 2010, 28(5):525-535(in Chinese).
[25] 刘春明, 赵志军, 卜忱, 等. 低速风洞双自由度大幅振动试验技术[J]. 航空学报, 2016, 37(8):2417-2425. LIU C M, ZHAO Z J, BU C, et al. Double degree-of-freedom large amplitude oscillation test technology in low speed wind tunnel[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(8):2417-2425(in Chinese).
[26] 王建锋, 卜忱, 谭浩. 基于液压驱动的动态试验控制系统设计[J]. 航空学报, 2017, 38(S1):721521. WANG J F, BU C, TAN H. Control system design of dynamic test based on hydraulic drive[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(S1):721521(in Chinese).
[27] 谢志江, 孙小勇, 孙海生, 等. 低速风洞动态试验的高速并联机构设计及动力学分析[J]. 航空学报, 2013, 34(3):487-494. XIE Z J, SUN X Y, SUN H S, et al. Mechanism design and dynamics analysis of high speed parallel robot for dynamic test in low speed wind tunnel[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(3):487-494(in Chinese).
[28] 刘志涛, 孙海生. 一种提高风洞动态试验数据质量的模型姿态控制和测量技术[J]. 航空学报, 2016, 37(8):2426-2435. LIU Z T, SUN H S. A model attitude control and measurements technique for improving quality of wind tunnel dynamic test data[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(8):2426-2435(in Chinese).
[29] 郑世华, 徐永长. 压缩性对大振幅俯仰振动三角翼动态特性影响的试验研究[J]. 流体力学实验与测量, 2002, 16(4):75-80. ZHENG S H, XU Y C. The experimental research of compressibility effects on dynamic characteristics of delta wings at pitching oscillation of large amplitude[J]. Experiment and Measurements in Fluid Mechanics, 2002, 16(4):75-80(in Chinese).
[30] 李其畅, 赵忠良, 杨海泳, 等. 模型大迎角高速动态特性与数据精度分析[J]. 航空学报, 2016, 37(8):2594-2602. LI Q C, ZHAO Z L, YANG H Y, et al. Analysis dynamic performance and test data precision of models with high angle of attack in high speed wind tunnel[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(8):2594-2602(in Chinese).
[31] 李乾, 赵忠良, 王晓冰, 等. 一种近空间高超声速滚转稳定性研究[J]. 航空学报, 2018, 39(3):121553. LI Q, ZHAO Z L, WANG X B, et al. Rolling stability research of a near space vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(3):121533(in Chinese).
[32] 黄达, 吴根兴. 三角翼俯仰滚转耦合运动气动特性研究[J]. 航空学报, 1999, 20(6):485-488. HUANG D, WU G X. Investigation of unsteady aerodynamic characteristics for a delta wing oscillating in large amplitude pitching-roll motion[J]. Acta Aeronautica et Astronautica Sinica, 1999, 20(6):485-488(in Chinese).
[33] 黄达, 吴根兴. 飞机偏航-滚转耦合运动非定常空气动力实验[J]. 南京航空航天大学学报, 2005, 37(4):408-411. HUANG D, WU G X. Experiment on fighter oscillating in large amplitude yaw-roll motion[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2005, 37(4):408-411(in Chinese).
[34] 徐永长, 郑世华. 动态失速风洞实验数据处理中的频谱分析与数字滤波[J]. 流体力学实验与测量, 2000, 14(3):79-82. XU Y C, ZHENG S H. Spectrum analysis and digital filtering to experimental data of dynamic stall test in wind tunnel[J]. Experiment and Measurements in Fluid Mechanics, 2000, 14(3):79-82(in Chinese).
[35] 李其畅, 伍开元, 赵忠良, 等. 1.2 m×1.2 m高速风洞大振幅动态试验系统及其初步应用[J]. 空气动力学学报, 2005, 23(3):378-381. LI Q C, WU K Y, ZHAO Z L, et al. Introduction of dynamic experimental system with large amplitude in the 1.2 m×1.2 m sub-transonic wind tunnel[J]. Acta Aerodynamica Sinica, 2005, 23(3):378-381(in Chinese).
Outlines

/