The hysteresis and creep nonlinear characteristics of piezoelectric actuators seriously affect the stability of the control system and the accuracy of dynamic tracking. To mitigate hysteresis and creep effects, this paper presents an adaptive hybrid compensation control method that is a feedforward-feedback control method combining hysteresis-creep feedforward compensator with adaptive filter feedback control. Based on the Modified Prandtl-Ishlinskii (MPI) model, the hysteresis and creep nonlinear characteristics of piezoelectric actuators are refined and the inverse hysteresis-creep compensator is established for feedforward compensation. Based on the errors of the feedforward compensation, an adaptive filter feedback controller is adopted to adjust the input signal in real time to achieve an accurate compensation control of hysteresis nonlinearity and lg(t)-type creep characteristics of the piezoelectric ceramic actuator. The numerical simulation and experimental results show that the error of the adaptive hybrid compensation control of piezoelectric actuators is reduced effectively compared with the traditional feedforward compensation. It is shown that the proposed adaptive feedforward-feedback control scheme can largely improve the accuracy and adaptation of hysteretic compensation dynamic tracking.
ZHAO Tian
,
YANG Zhichun
,
LIU Hao
,
Kassem MOHAMMED
,
WANG Wei
. Hysteresis and creep nonlinearities modeling and adaptive hybrid compensation control of piezoelectric stack actuators[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018
, 39(12)
: 222308
-222308
.
DOI: 10.7527/S1000-6893.2018.22308
[1] 梁力, 杨智春, 欧阳炎, 等. 垂尾抖振主动控制的压电作动器布局优化[J]. 航空学报, 2015, 37(10):3035-3043. LIANG L, YANG Z C, OUYANG Y, et al. Optimization of piezoelectric actuator configuration on a vertical tail for buffeting control[J]. Acta Aeronautica et Astronautica Sinica, 2015, 37(10):3035-3043(in Chinese).
[2] 王晓明, 周文雅, 吴志刚. 压电纤维复合材料驱动的机翼动态形状控制[J]. 航空学报, 2017, 38(1):154-162. WANG X M, ZHOU W Y, WU Z G. Dynamic shape control of wings using piezoelectric fiber composite materials[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(1):154-162(in Chinese).
[3] ADRIAENS H J M T A, DE KONING W L, BANNING R. Modeling piezoelectric actuators[J]. IEEE/ASME Transactions on Mechatronics, 2000, 5(4):331-341.
[4] RAKOTONDRABE M, HADDAB Y, LUTZ P. Nonlinear modeling and estimation of force in a piezoelectric cantilever[C]//IEEE/ASME International Conference on Advanced Intelligence Mechatronics. Piscataway, NJ:IEEE Press, 2007:1-6.
[5] GE P, JOUANEH M. Generalized preisach model for hysteresis nonlinearity of piezoceramic actuators[C]//Proceedings of the International Conference on Instrumentation, Control and Automation, 2011:35-40.
[6] XIAO S, LI Y. Modeling and high dynamic compensating the rate-dependent hysteresis of piezoelectric actuators via a novel modified inverse Preisach model[J]. IEEE Transactions on Control Systems Technology, 2013, 21(5):1549-1557.
[7] TAN U X, LATT W T, WIDJAJA F, et al. Tracking control of hysteretic piezoelectric actuator using adaptive rate-dependent controller[J]. Sensors and Actuators A:Physical, 2009, 150(1):116-123.
[8] HASSANI V, TJAHJOWIDODO T. Integrated rate and inertial dependent Prandtl-Ishlinskii model for piezoelectric actuator[C]//International Conference on Instrumentation Control and Automation. Piscataway, NJ:IEEE Press, 2011:35-40.
[9] ZHOU M, WANG S, WEI G. Hysteresis modeling of magnetic shape memory alloy actuator based on Krasnosel'skii-Pokrovskii model[J]. The Scientific World Journal, 2013, 2013:865176.
[10] XU Q, LI Y. Dahl model-based hysteresis compensation and precise positioning control of an XY parallel micromanipulator with piezoelectric actuation[J]. Journal of Dynamic Systems Measurement and Control, 2010, 132(4):558-564.
[11] RAKOTONDRABE M. Bouc-Wen modeling and inverse multiplicative structure to compensate hysteresis nonlinearity in piezoelectric actuators[J]. IEEE Transactions on Automation Science and Engineering, 2011, 8(2):428-431.
[12] LI Y, XU Q. A totally decoupled piezo-driven XYZ flexure parallel micropositioning stage for micro/nanomanipulation[J]. IEEE Transactions on Automation Science and Engineering, 2011, 8(2):265-279.
[13] WANG G, CHEN G. Identification of piezoelectric hysteresis by a novel Duhem model based neural network[J]. Sensors and Actuators A:Physical, 2017, 264:282-288.
[14] GU G Y, ZHU L M. Motion control of piezoceramic actuators with creep, hysteresis and vibration compensation[J]. Sensors and Actuators A Physical, 2013, 197(7):76-87.
[15] SHIEH H J, CHIU Y J, CHEN Y T. Optimal PID control system of a piezoelectric microospitioner[C]//IEEE/SICE International Symposium on System Integration. Piscataway, NJ:IEEE Press, 2009:1-5.
[16] LI Y, XU Q. Adaptive sliding mode control with perturbation estimation and PID sliding surface for motion tracking of a piezo-driven micromanipulator[J]. IEEE Transactions on Control Systems Technology, 2010, 18(4):798-810.
[17] SU C Y, STEPANENKO Y, SVOBODA J, et al. Robust adaptive control of a class of nonlinear systems with unknown backlash-like hysteresis[J]. IEEE Transactions on Automatic Control, 2000, 45(12):2427-2432.
[18] AL JANAIDEH M, ALJANAIDEH O. Further results on open-loop compensation of rate-dependent hysteresis in a magnetostrictive actuator with the Prandtl-Ishlinskii model[J]. Mechanical Systems and Signal Processing, 2018, 104:835-850.
[19] BROKATE M, SPREKELS J. Hysteresis and phase transitions[M]. Berlin-Heidelberg-New York:Springer, 1996.
[20] KUHNEN K. Modeling, identification and compensation of complex hysteretic nonlinearities:A modified Prandtl-Ishlinskii approach[J]. European Journal of Control, 2003, 9(4):407-418.
[21] HASSANI V, TJAHJOWIDODO T, DO T N. A survey on hysteresis modeling, identification and control[J]. Mechanical Systems and Signal Processing, 2014, 49(1-2):209-233.
[22] PESOTSKI D, JANOCHA H, KUHNEN K. Adaptive compensation of hysteretic and creep nonlinearities in solid-state actuators[J]. Journal of Intelligent Material Systems and Structures, 2010, 21(21):1437-1446.