Fluid Mechanics and Flight Mechanics

A hybrid inverse/direct optimization design method for transonic laminar flow airfoil

  • CHEN Jing ,
  • SONG Wenping ,
  • ZHU Zhen ,
  • XU Zhenming ,
  • HAN Zhonghua
Expand
  • 1. National Key Laboratory of Science and Technology on Aerodynamic Design and Research, School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
    2. Wuhan Second Ship Design and Research Institute, Wuhan 430064, China

Received date: 2018-04-18

  Revised date: 2018-05-30

  Online published: 2018-07-20

Supported by

National Natural Science Foundation of China (11772261); Aeronautical Science Foundation of China (2016ZA53011); ATCFD Project (2015-F-016)

Abstract

To reach good qualities of supercritical and laminar characteristics, the design of transonic natural laminar flow airfoil, suitable for short/medium civil aircraft, is much more complex compared to conventional supercritical airfoil. Aimed to overcome the shortcomings of the current inverse and direct methods, a hybrid inverse/direct optimization method suitable for transonic natural laminar flow airfoil is put forward. A hybrid objective is formulated by weighting the objective of inverse design defined by local target flow characteristics based on experience and the objective of direct optimization design defined by the specific performance index. Constraints concerning flow and geometry are considered as well. Optimization algorithm is based on a surrogate model with adaptive parallel infilling techniques. Flow field is simulated by a Reynolds-Averaged Navier-Stokes (RANS) equations solver with functionality of automatic transition prediction. The optimization design of a transonic natural laminar flow airfoil is carried out by setting the prescribed local target pressure distribution as the inverse design objective and the total drag coefficient as the direct optimization objective, yielding satisfactory results and verifying the validity of the method. With two rounds of optimization, the design objective of the hybrid inverse/direct optimization is dramatically decreased:local target pressure distribution is realized on the designed airfoil. And the total drag is reduced by 15.5%. Laminar flow regions on both sides of the designed airfoil are larger than 55% chord. The lift-to-drag ratio of the transonic natural laminar flow wing with the designed airfoil is 6.64% larger than that with the base airfoil. And the designed wing shows better aerodynamic performance within certain range of lift coefficient, which verifies the effectiveness of the hybrid inverse/direct method for natural laminar flow airfoil design problems.

Cite this article

CHEN Jing , SONG Wenping , ZHU Zhen , XU Zhenming , HAN Zhonghua . A hybrid inverse/direct optimization design method for transonic laminar flow airfoil[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018 , 39(12) : 122219 -122219 . DOI: 10.7527/S1000-6893.2018.22219

References

[1] FUJINO M, YOSHIZAKI Y, KAWAMURA Y. Natural-laminar-flow airfoil development for a lightweight business jet[J]. Journal of Aircraft, 2003, 40(4):609-615.
[2] FUJINO M. Design and development of the Honda jet[J]. Journal of Aircraft, 2005, 42(3):755-764.
[3] CAMPBELL R, CAMPBLL M, STREIT T. Progress toward efficient laminar flow analysis and design[C]//29th AIAA Applied Aerodynamics Conference. Reston, VA:AIAA, 2011.
[4] CROUCH J. Boundary-layer transition prediction for laminar flow control (Invited)[C]//45th AIAA Fluid Dynamics Conference. Reston, VA:AIAA, 2015.
[5] GREEN B E, WHITESIDES J L, CAMPBELL R L, et al. Method for the constrained design of natural laminar flow airfoils[J]. Journal of Aircraft, 1997, 34(6):706-712.
[6] GOPALARATHNAM A, SELIG M S. Low-speed natural-laminar-flow airfoils:Case study in inverse airfoil design[J]. Journal of Aircraft, 2001, 38(1):57-63.
[7] CAMPBELL R L, LYNDE M N. Natural laminar flow design for wings with moderate sweep[C]//34th AIAA Applied Aerodynamics Conference. Reston, VA:AIAA, 2016.
[8] SEITZ A, KRUSE M, WUNDERLICH T, et al. The DLR project LamAiR:Design of a NLF forward swept wing for short and medium range transport application[C]//29th AIAA Applied Aerodynamic Conference. Reston, VA:AIAA, 2011.
[9] LEE J D, JAMESON A. Natural-laminar-flow airfoil and wing design by adjoint method and automatic transition prediction[C]//47th AIAA Aerospace Sciences Meeting. Reston, VA:AIAA, 2009.
[10] AMOIGNON O G, PRALITS J O, HANIFI A, et al. Shape optimization for delay of laminar-turbulent transition[J]. AIAA Journal, 2006, 44(5):1009-1024.
[11] DRIVER J, ZINGG D W. Numerical aerodynamic optimization incorporating laminar-turbulent transition prediction[J]. AIAA Journal, 2007, 45(8):1810-1818.
[12] RASHAD R, ZINGG D W. Toward high-fidelity aerodynamic shape optimization for natural laminar flow[C]//21st AIAA Computational Fluid Dynamics Conference. Reston, VA:AIAA, 2013.
[13] RASHAD R, ZINGG D W. Aerodynamic shape optimization for natural laminar flow using a discrete-adjoint approach[J]. AIAA Journal, 2016, 54(11):3321-3337.
[14] CAMERON L, EARLY J, MCROBERTS R. Metamodel assisted multi-objective global optimisation of natural laminar flow aerofoils[C]//29th AIAA Applied Aerodynamics Conference. Reston, VA:AIAA, 2011.
[15] 华俊, 张仲寅, 施宁光, 等. 现代自然层流翼型的设计方法[J]. 空气动力学学报, 1993, 11(1):57-63. HUA J, ZHANG Z Y, SHI N G, et al. Numerical design method for modern NLF airfoils[J]. Acta Aerodynamica Sinica, 1993, 11(1):57-63(in Chinese).
[16] 乔志德.自然层流超临界翼型的设计研究[J]. 流体力学实验与测量[J]. 1998, 12(4):23-31. QIAO Z D. Design of supercritical airfoils with natural laminar flow[J]. Experiments and Measurements in Fluid Mechanics, 1998, 12(4):23-31(in Chinese).
[17] 王迅, 蔡晋生, 屈崑, 等. 基于改进CST参数化方法和转捩模型的翼型优化设计[J]. 航空学报, 2015, 36(2):449-461. WANG X, CAI J S, QU K, et al. Airfoil optimization based on improved CST parametric method and transition model[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2):449-461(in Chinese).
[18] HAN Z H, DENG J, LIU J, et al. Design of laminar supercritical airfoils based on Navier-Stokes equations[C]//28th Congress of the International Council of the Aeronautical Sciences, 2012.
[19] HAN Z H, CHEN J, ZHU Z, et al. Aerodynamic design of transonic natural-laminar-flow (NLF) wing via surrogate-based global optimization[C]//54th AIAA Aerospace sciences meeting. Reston, VA:AIAA, 2016.
[20] HAN Z H, CHEN J, ZHANG K S, et al. Aerodynamic shape optimization of natural-laminar-flow wing using surrogate-based approach[J]. AIAA Journal, 2018, 56(7):2579-2593.
[21] 马晓永, 张彦军, 段卓毅, 等. 自然层流机翼气动外形优化设计研究[J]. 空气动力学学报, 2015, 33(6):812-817. MA X Y, ZHANG Y J, DUAN Z Y, et al. Study of aerodynamic shape optimization for natural laminar wing[J]. Acta Aerodynamica Sinica, 2015, 33(6):812-817(in Chinese).
[22] ZHANG Y F, FANG X, CHEN H X, et al. Supercritical natural laminar flow airfoil optimization for regional aircraft wing design[J]. Aerospace Science and Technology, 2015, 43:152-164.
[23] 黄江涛, 高正红, 白俊强, 等. 应用Delaunay图映射与FFD技术的层流翼型气动优化设计[J]. 航空学报, 2012, 33(10):1817-1826. HUANG J T, GAO Z H, BAI J Q, et al. Laminar airfoil aerodynamic optimization design based on Delaunay Graph Mapping and FFD technique[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(10):1817-1826(in Chinese).
[24] GAO Z H, HUANG J T. Advanced research on laminar flow aerodynamic configuration optimization for green aircraft[C]//32nd AIAA Applied Aerodynamic Conference. Reston, VA:AIAA, 2014.
[25] ZHAO H, GAO Z H, WANG C, et al. Robust design of high speed natural-laminar-flow airfoil for high lift[C]//AIAA Aerospace Sciences Meeting. Reston, VA:AIAA, 2017.
[26] 邓磊, 乔志德, 杨旭东, 等. 高升阻比自然层流翼型多点/多目标优化设计[J]. 空气动力学学报, 2011, 29(3):330-335. DENG L, QIAO Z D, YANG X D, et al. Multi-point/objective optimization design of high lift-to-drag ratio for NLF airfoils[J]. Acta Aerodynamica Sinica, 2011, 29(3):330-335(in Chinese).
[27] 陈永彬, 唐智礼, 盛建达. 跨声速自然层流翼型多目标优化设计[J]. 计算物理, 2016, 33(3):283-296. CHEN Y B, TANG Z L, SHENG J D. Multi-objective optimization for natural laminar flow airfoil in transonic flow[J]. Chinese Journal of Computational Physics, 2016, 33(3):283-296(in Chinese).
[28] KULFAN B M. Universal parametric geometry representation method[J]. Journal of Aircraft, 2008, 45(1):142-158.
[29] 卜月鹏, 宋文萍, 韩忠华, 等. 基于CST参数化方法的翼型气动优化设计[J]. 西北工业大学学报, 2013, 31(5):829-836. BU Y P, SONG W P, HAN Z H, et al. Aerodynamic optimization design of airfoil based on CST parameterization method[J]. Journal of Northwestern Polytechnical University, 2013, 31(5):829-836(in Chinese).
[30] HAN Z H. SurroOpt:A generic surrogate-based optimization code for aerodynamic and multidisciplinary design[C]//30th Congress of the International Council of the Aeronautical Sciences, 2016.
[31] 韩忠华. Kriging模型及代理优化算法研究进展[J]. 航空学报, 2016, 37(11):3197-3225. HAN Z H. Kriging surrogate model and its application to design optimization:A review of recent progress[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11):3197-3225(in Chinese).
[32] LIU J, SONG W P, HAN Z H, et al. Efficient aerodynamic shape optimization of transonic wings using a parallel infilling strategy and surrogate models[J]. Structural and Multidisciplinary Optimization, 2016, 55(3):925-943.
[33] XIE F T, SONG W P, HAN Z H. Numerical study of high-resolution scheme based on preconditioning method[J]. Journal of Aircraft, 2009, 46(2):520-525.
[34] ZHANG K, SONG W P. Infinite swept-wing Reynolds-averaged Navier-Stokes computations with full eN transition criterion[C]//27th International Congress of the Aeronautical Sciences, 2010.
[35] STOCK H W. Navier-Stokes computations of laminar airfoils using eN transition prediction:Rept. IB 12999[R]. Braunschweig:DLR-Interner Bericht, DLR, German Aerospace Center, 1999:18
[36] HAN Z H, DENG J, LIU J, et al. Design of laminar supercritical airfoils based on Navier-Stokes equations[C]//28th Congress of the International Council of the Aeronautical Sciences, 2012.
[37] BOLTZ F W, KENYON G C, ALLEN C Q. Effects of sweep angle on the boundary-layer stability characteristics of an untapered wing at low speeds[R]. Washington, D.C.:NASA, 1960.
[38] 朱震, 宋文萍, 韩忠华. 基于双eN方法的翼身组合体流动转捩自动判断[J]. 航空学报, 2018, 39(2):121707. ZHU Z, SONG W P, HAN Z H. Automatic transition prediction for wing-body configurations using dual eN method[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(2):121707(in Chinese).
[39] GEZA S. Large-scale laminar flow tests evaluated with linear stability theory[J]. Journal of Aircraft, 2004, 41(2):224-230.
Outlines

/