Electronics and Electrical Engineering and Control

Mission planning for agile satellite based on the mapping relationship between ground missions and spatial attitudes

  • ZHAO Lin ,
  • WANG Shuo ,
  • HAO Yong ,
  • LIU Yuan ,
  • CHAI Yi
Expand
  • College of Automation, Harbin Engineering University, Harbin 150001, China

Received date: 2018-01-31

  Revised date: 2018-07-02

  Online published: 2018-07-20

Supported by

National Natural Science Foundation of China (61633008); Postdoctoral Scientific Research Developmental Fund of Heilongjiang Province of China (LBH-Q14054)

Abstract

To address the requirement for multi-target observation in an overlapping time window, the task scheduling of a single agile satellite with a single orbit is studied. The traditional algorithm lacks effectiveness due to the limitation of maneuvering capability and the redundancy of imaging mission. To improve the effectiveness, the collaborative planning of mission and attitude is proposed in this paper. First, the collaborative planning model of the mission and attitude is designed by establishing a mapping relationship between ground missions and spatial attitudes and by examining the optimality of attitude adjustment time between adjacent missions, which ensures that the satellite has no extra waiting time when observing adjacent missions. Then, based on the characteristics of the model, an Adaptive Pseudo-spectral Genetic Algorithm (APGA) is proposed to obtain the optimal adjustment time in mission planning of the agile satellite. Finally, simulation experiments are used to verify the enhanced effectiveness of the model and the algorithm proposed.

Cite this article

ZHAO Lin , WANG Shuo , HAO Yong , LIU Yuan , CHAI Yi . Mission planning for agile satellite based on the mapping relationship between ground missions and spatial attitudes[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018 , 39(10) : 322066 -322066 . DOI: 10.7527/S1000-6893.2018.22066

References

[1] KAWAK B J. Development of a low-cost, low micro-vibration CMG for small agile satellite applications[J]. Acta Astronautica, 2017, 131(1):113-122.
[2] LIU S, CHEN Y W, XING L N, et al. Time-dependent autonomous task planning of agile imaging satellites[J]. Journal of Intelligent & Fuzzy Systems, 2016, 31(3):1365-1375.
[3] KARPENKO M, PROULX R J. Experimental implementation of riemann-stieltjes optimal control for agile imaging satellites[J]. Journal of Guidance, Control, and Dynamics, 2016, 39(1):144-149.
[4] 郝会成. 敏捷卫星任务规划问题建模及求解方法研究[D]. 哈尔滨:哈尔滨工业大学, 2013:17-20. HAO H C. Research on mission planning problem modeling and solving method of agile earth observation satellite[D]. Harbin:Harbin Institute of Technology, 2013:17-20(in Chinese).
[5] 郝会成, 姜维, 李一军. 对地观测卫星任务规划问题研究述评[J]. 系统工程与电子技术, 2013, 35(9):1878-1885. HAO H C, JIANG W, LI Y J. Review of task scheduling research for the earth observing satellites[J]. Systems Engineering and Electronics, 2013, 35(9):1878-1885(in Chinese).
[6] 孙凯, 白国庆, 陈英武, 等. 面向动作序列的敏捷卫星任务规划问题[J]. 国防科技大学学报, 2012, 34(6):141-147. SUN K, BAI G Q, CHEN Y W, et al. Action planning for agile earth-observing satellite mission planning problem[J]. Journal of National University of Defense Technology, 2012, 34(6):141-147(in Chinese).
[7] 叶东, 孙兆伟, 王剑颖. 敏捷卫星的联合执行机构控制策略[J]. 航空学报, 2012, 33(6):1108-1115. YE D, SUN Z W, WANG J Y, et al. Control strategy of hybrid actuator for agile satellites[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(6):1108-1115(in Chinese).
[8] 邱涤珊, 郭浩, 贺川, 等. 敏捷成像卫星多星密集任务调度方法[J]. 航空学报, 2013, 34(4):882-889. QIU D S, GUO H, HE C, et al. Intensive task scheduling method for multi-agile imaging satellites[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(4):882-889(in Chinese).
[9] LEMAITRE M, VERFAILLIE G, JOUHAUD F, et al. Selecting and scheduling observations of agile satellites[J]. Aerospace Science and Technology, 2002, 6(5):367-381.
[10] TANGPATTANAKUL P, JOZEFOWIEZ N, LOPEZ P. A multi-objective local search heuristic for scheduling Earth observations taken by an agile satellite[J]. European Journal of Operational Research, 2015, 245(2):542-554.
[11] XU R, CHEN H P, LIANG X L. Priority-based constructive algorithms for scheduling agile earth observation satellites with total priority maximization[J]. Expert Systems with Applications, 2016, 51(C):195-206.
[12] 陈成. 时间依赖调度方法及在敏捷卫星任务规划中的应用研究[D]. 长沙:国防科技大学, 2014:1-15. CHEN C. Research on time-dependent scheduling methods and application on agile satellites mission planning[D]. Changsha:National University of Defense Technology, 2014:1-15(in Chinese).
[13] MAVROVOUNIOTIS M, YANG S X. A memetic ant colony optimization algorithm for the dynamic travelling salesman problem[J]. Soft Computing, 2011, 15(7):1405-1425.
[14] 黄静. 三轴稳定航天器姿态最优控制方法研究[D]. 哈尔滨:哈尔滨工业大学, 2010:15-16. HUANG J. Optimal attitude control for three-axis stabilized spacecrafts[D]. Harbin:Harbin Institute of Technology, 2010:15-16(in Chinese).
[15] PANAGIOTIS T. Stabilization and optimality results for the attitude control problem[J]. Journal of Guidance, Control, and Dynamics, 1996, 19(4):772-779.
[16] 赵琳, 王硕, 郝勇, 等. 基于能量最优的敏捷遥感卫星在轨任务规划[J]. 航空学报, 2017, 38(6):207-225. ZHAO L, WANG S, HAO Y, et al. Energy-optimal in orbit mission planning for agile remote sensing satellites[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(6):207-225.
[17] BENSON D A, HUNTINGTON G T, THORVALDSEN T P, et al. Direct trajectory optimization and costate estimation via an orthogonal collocation method[J]. Journal of Guidance, Control, and Dynamics, 2006, 29(6):1435-1440.
[18] 刘富钰, 崔培玲. 基于改进遗传算法的敏捷卫星姿态路径规划[J]. 电光与控制, 2012, 19(12):23-33. LIU F Y, CUI P L. Attitude path planning for agile satellite based on improved genetic algorithm[J]. Electronics Optics & Control, 2012, 19(12):23-33(in Chinese).
[19] 张秋华, 孙松涛, 谌颖, 等. 时间固定的两航天器追逃策略及数值求解[J]. 宇航学报, 2014, 35(5):537-544. ZHANG Q H, SUN S T, SHEN Y, et al. Strategy and numerical solution of pursuit-evasion with fixed duration for two spacecraft[J]. Journal of Astronautics, 2014, 35(5):537-544(in Chinese).
[20] GARG D, PATTERSON M A, FRANCOLIN C, et al. Direct trajectory optimization and costate estimation of finite-horizon and infinite-horizon optimal control problems using a radau pseudospectral method[J]. Computational Optimization and Applications, 2011, 49(2):335-358.
[21] LI J, XI X N. Time-optimal reorientation of the rigid spacecraft using a pseudospectral method integrated homotopic approach[J]. Optimal Control Application & Methods, 2015, 36(6):889-918.
Outlines

/