Review

Research progress in wave evolution and noise control for supersonic cavity flows

  • LIU Jun ,
  • CAI Jinsheng ,
  • YANG Dangguo ,
  • SHI Ao ,
  • LU Bo
Expand
  • 1. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
    2. High Speed Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China

Received date: 2018-05-24

  Revised date: 2018-06-26

  Online published: 2018-07-13

Supported by

National Basic Research Program of China (613240);State Key Laboratory of Aerodynamics Foundation (SKLA20170304)

Abstract

Cavity structure is widely used in the advanced aircraft and engine, such as internal weapon bay, wheel well, optical dome, scramjet combustor, and thrust-vectoring nozzle. However, these cavities generally face severe aerodynamic noise in practical applications. Research shows the generation of cavity noise is closely related to the unsteady flow and complex wave structure. For the systematic understandings of the wave evolution, the mechanism of noise generation and the mechanism of noise control, the research on the noise induced by supersonic cavity flow is reviewed. In this paper, the main characteristics of closed, transitional and open supersonic cavity flows are introduced. To address the open cavity flow that generates the most serious aerodynamic noise, the formation, propagation and interaction of the seven typical flow structures are analyzed. In addition, three types of generation mechanisms of cavity noise are introduced, and their similarities and differences on each element of feedback model are analyzed. Furthermore, five possible ways to control supersonic cavity noise are summarized, pointing out that little attention has been paid to the fifth way which intends to control noise by breaking the propagation of feedback waves. Finally, unresolved issues in the current research are pointed out, and suggestions for further research are proposed.

Cite this article

LIU Jun , CAI Jinsheng , YANG Dangguo , SHI Ao , LU Bo . Research progress in wave evolution and noise control for supersonic cavity flows[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018 , 39(11) : 22366 -022366 . DOI: 10.7527/S1000-6893.2018.22366

References

[1] KAUFMAN L G, CLARK R L. Mach 0.6 to 3.0 flows over rectangular cavities: AFWAL-TR-82-3112[R]. Dayton, OH: Air Force Wright Aeronautical Labs, 1983.
[2] LADOON D W, SCHNEIDER S P, SCHMISSEUR J D. Physics of resonance in a supersonic forward-facing cavity[J]. Journal of Spacecraft and Rockets, 1998, 35(5): 626-632.
[3] 耿云飞, 阎超. 高超声速前缘空腔数值模拟研究[J]. 空气动力学学报, 2011, 29(4): 470-475. GENG Y F, YAN C. Numerical simulation on the hypersonic leading edge cavity[J]. Acta Aerodynamica Sinica, 2011, 29(4): 470-475 (in Chinese).
[4] 陆海波, 田世英. 迎风凹腔——一种有效的高超声速飞行器热防护选择[J]. 飞航导弹, 2015(6): 11-15. LU H B, TIAN S Y. Forward-facing cavity—One choice for thermal protection of hypersonic vehicles[J]. Aerodynamic Missile Journal, 2015(6): 11-15 (in Chinese).
[5] ROUGEUX A, MALO-MOLINA F. Numerical studies for 3D supersonic cavity based flows: AIAA-2012-0776[R]. Reston, VA: AIAA, 2012.
[6] WHITE J, BAURLE R, FISHER T, et al. Low-dissipation advection schemes designed for large eddy simulations of hypersonic propulsion systems: AIAA-2012-4263[R]. Reston, VA: AIAA, 2012.
[7] STALLINGS JR R L, WILCOX JR F J, FORREST D K. Measurements of forces, moments, and pressures on a generic store separating from a box cavity at supersonic speeds: NASA-TP-3110[R].Washington, D.C.: NASA, 1991.
[8] 汪洪波, 孙明波, 吴海燕, 等. 超声速燃烧凹腔质量交换特性的混合RANS/LES模拟[J]. 航空动力学报, 2010, 25(1): 41-46. WANG H B, SUN M B, WU H Y, et al. Hybrid RANS/LES simulation of mass exchange characteristics of cavity for supersonic combustion[J]. Journal of Aerospace Power, 2010, 25(1): 41-46 (in Chinese).
[9] 孙明波, 梁剑寒, 王振国. 超声速燃烧火焰稳定凹腔质量交换特性的数值研究[J]. 力学学报, 2007, 39(2): 188-194. SUN M B, LIANG J H, WANG Z G. Numerical study on mass exchange characteristics of cavity flameholders for scramjet applications[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 39(2): 188-194 (in Chinese).
[10] 贾真. 超声速燃烧室中壁面凹腔结构的稳焰机理[J]. 航空动力学报, 2013, 28 (6): 1392-1401. JIA Z. Flame-holding mechanism of cavity structure in super-sonic combustor[J]. Journal of Aerospace Power, 2013, 28 (6): 1392-1401 (in Chinese).
[11] MCILWAIN S, KIM J, BREITENFELD S, et al. Simulations of an aeroelastic control system for shock/boundary layer interactions: AIAA-2001-0269[R]. Reston, VA: AIAA, 2001.
[12] JAIMAN R K, LOTH E, DUTTON J C. Simulations of normal shock-wave/boundary-layer interaction control using mesoflaps[J]. Journal of Propulsion and Power, 2004, 20(2): 344-352.
[13] CHANG C L, CHOUDHARI M, VENKATACHARI B S, et al. Effects of cavities and protuberances on transition over hypersonic vehicles: AIAA-2011-3245[R]. Reston, VA: AIAA, 2011.
[14] LIECHTY D S, BERRY S A, HORVATH T J. Shuttle return to flight experimental results: Protuberance effects on boundary layer transition: NASA-TM-2006-214305[R]. Washington, D.C.: NASA, 2006.
[15] EVERHART J. Supersonic/hypersonic correlations for in-cavity transition and heating augmentation: AIAA-2011-3480[R]. Reston, VA: AIAA, 2011.
[16] XIAO L, XIAO Z, DUAN Z, et al. Improved-delayed-detached-eddy simulation of cavity-induced transition in hypersonic boundary layer[J]. International Journal of Heat and Fluid Flow, 2015, 51: 138-150.
[17] 侯中喜, 夏刚, 秦子增. 三维超声速开式空腔振荡特性研究[J]. 国防科技大学学报, 2004, 26(6): 1-4. HOU Z X, XIA G, QIN Z Z. The numerical analysis of oscillatory characteristics in 3D supersonic open cavity[J]. Journal of National University of Defense Technology, 2004, 26(6): 1-4 (in Chinese).
[18] NENMENI V, YU K. Cavity-induced mixing enhancement in confined supersonic flows: AIAA-2002-1010[R]. Reston, VA: AIAA, 2002.
[19] 刘彧, 周进, 晏至辉.不同隔板构型下的超声速混合层流场特性[J]. 国防科技大学学报, 2013, 35(5): 1-5. LIU Y, ZHOU J, YAN Z H. Study on the flow fields of supersonic mixing layer with splitters of different geometric configurations[J]. Journal of National University of Defense Technology, 2013, 35(5): 1-5 (in Chinese).
[20] RAMAN G, ENVIA E, BENCIC T. Tone noise and nearfield pressure produced by jet-cavity interaction: AIAA-1998-0604[R]. Reston, VA: AIAA, 1998.
[21] HELLER H, DELFS J. Cavity pressure oscillations: The generating mechanism visualized[J]. Journal of Sound and Vibration, 1996, 196 (2): 248-252.
[22] LEE B H K. Effect of captive stores on internal weapons bay floor pressure distributions[J]. Journal of Aircraft, 2010, 47(2): 732-736.
[23] LAWSON S J, BARAKOS G N. Review of numerical simulations for high-speed, turbulent cavity flows[J]. Progress in Aerospace Sciences, 2011, 47(3): 186-216.
[24] KRISHNAMURTY K. Acoustic radiation from two-dimensional rectangular cutouts in aerodynamic surfaces: NACA-TN-3487[R]. Washington, D.C.: NASA, 1955.
[25] NESTLER D E. An experimental study of hypersonic cavity flow[J]. Journal of Spacecraft and Rockets, 1982, 19(3): 195-196.
[26] ZHANG X, EDWARDS J A. An investigation of supersonic oscillatory cavity flows driven by thick shear layers[J]. Aeronautical Journal, 1990, 94: 355-364.
[27] ZHANG X, RONA A, EDWARDS J A. An observation of pressure waves around a shallow cavity[J]. Journal of Sound and Vibration, 1998, 214(4): 771-778.
[28] ZHUANG N. Experimental investigation of supersonic cavity flows and their control[D]. Tallahassee, FL: Florida State University, 2007: 41-145.
[29] SCHMIT R, SEMMELMAYER F, GROVE J, et al. Fourier analysis of high speed shadowgraph images around a Mach 1.5 cavity flow field: AIAA-2011-3961[R]. Reston, VA: AIAA, 2011.
[30] HANDA T, MIYACHI H, KAKUNO H, et al. Generation and propagation of pressure waves in supersonic deep-cavity flows[J]. Experiments in Fluids, 2012, 53(6): 1855-1866.
[31] ROSSITER J E. Wind-tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds: 64037[R]. Farnborough: Ministry of Aviation, Royal Aircraft Establishment, 1964.
[32] HELLER H H, BLISS D B. Aerodynamically induced pressure oscillations in cavities—Physical mechanisms and suppression concepts: AFFDL-TR-74-133[R]. Dayton, OH: Wright-Patterson Air Force Base, 1975.
[33] AHUJA K K, MENDOZA J. Effects of cavity dimensions, boundary layer, and temperature on cavity noise with emphasis on benchmark data to validate computational aeroacoustic codes: NASA-CR-4653[R]. Washington, D.C.: NASA, 1995.
[34] 张锦松, 谭磊, 刘俊, 等. 明渠水流相似模拟超声速气体空腔流动的研究[J/OL]. 水力发电学报, (2018-04-03) [2018-08-13]. http://kns.cnki.net/kcms/detail/11.2241.TV.20180402.1631.010.html. ZHANG J S, TAN L, LIU J, et al. Supersonic gas cavity flow with open channel flow[J/OL]. Journal of Hydroelectric Engineering,(2018-04-03) [2018-08-13]. http://kns.cnki.net/kcms/detail/11.2241.TV.20180402.1631.010.html.
[35] TAKAKURA Y, SUZUKI T, HIGASHINO F, et al. Numerical study on supersonic internal cavity flows—What causes the pressure fluctuations?: AIAA-1999-0545[R]. Reston, VA: AIAA, 1999.
[36] TAM C J, ORKWIS P D, DISIMILE P J. Algebraic turbulence model simulations of supersonic open-cavity flow physics[J]. AIAA Journal, 1996, 34(11): 2255-2260.
[37] WANG H, SUN M, QIN N, et al. Characteristics of oscillations in supersonic open cavity flows[J]. Flow, Turbulence and Combustion, 2013, 90(1): 121-142.
[38] ZHANG X. Compressible cavity flow oscillation due to shear layer instabilities and pressure feedback[J]. AIAA Journal, 1995, 33(8): 1404-1411.
[39] MOHRI K, HILLIER R. Computational and experimental study of supersonic flow over axisymmetric cavities[J]. Shock Waves, 2011, 21(3): 175-191.
[40] LI W, NONOMURA T, FUJⅡ K. Effects of shear-layer characteristic on the feedback-loop mechanism in supersonic open cavity flows: AIAA-2011-1218[R]. Reston, VA: AIAA, 2011.
[41] LI W, NONOMURA T, OYAMA A, et al. Feedback mechanism in supersonic laminar cavity flows[J]. AIAA Journal, 2013, 51(1): 253-257.
[42] RIZZETTA D P. Numerical simulation of supersonic flow over a three-dimensional cavity[J]. AIAA Journal, 1988, 26(7): 799-807.
[43] LI W, NONOMURA T, FUJⅡ K. On the feedback mechanism in supersonic cavity flows[J]. Physics of Fluids, 2013, 25(5): 056101.
[44] ZHANG X, EDWARDS J A. Computational analysis of unsteady supersonic cavity flows driven by thick shear layers[J]. Aeronautical Journal, 1988, 92: 365-374.
[45] ZHANG X, EDWARDS J A. Analysis of unsteady supersonic cavity flow employing an adaptive meshing algorithm[J]. Computers & Fluids, 1996, 25(4): 373-393.
[46] CATTAFESTA Ⅲ L N, SONG Q, WILLIAMS D R, et al. Active control of flow-induced cavity oscillations[J]. Progress in Aerospace Sciences, 2008, 44(7-8): 479-502.
[47] ROWLEY C W, WILLIAMS D R. Dynamics and control of high-Reynolds-number flow over open cavities[J]. Annual Review of Fluid Mechanics, 2006, 38: 251-276.
[48] WILLIAMS D, ROWLEY C. Recent progress in closed-loop control of cavity tones: AIAA-2006-0712[R]. Reston, VA: AIAA, 2006.
[49] CATTAFESTA L, ALVI F, WILLIAMS D, et al. Review of active control of flow-induced cavity oscillations: AIAA-2003-3567[R]. Reston, VA: AIAA, 2003.
[50] STALLINGS R L, WILCOX F J. Experimental cavity pressure distributions at supersonic speeds: NASA-TP-2683[R]. Washington, D.C.: NASA, 1987.
[51] 马明生, 张培红, 邓有奇, 等. 超声速空腔流动数值模拟研究[J]. 空气动力学学报, 2008, 26(3): 388-393. MA M S, ZHANG P H, DENG Y Q, et al. Numerical simulation investigation of supersonic cavity flow[J]. Acta Aerodynamica Sinica, 2008, 26(3): 388-393 (in Chinese).
[52] MOON S, GAI S, KLEINE H, et al. Supersonic flow over straight shallow cavities including leading and trailing edge modifications: AIAA-2010-4687[R]. Reston, VA: AIAA, 2010.
[53] SRIDHAR V, KLEINE H, GAI S L. Visualization of wave propagation within a supersonic two-dimensional cavity by digital streak schlieren[J]. Experiments in Fluids, 2015, 56: 1-15.
[54] HANDA T, MASUDA M. On the jump in the frequency of acoustic oscillations in supersonic flows over rectangular cavity[J]. Physics of Fluids, 2009, 21(2): 026102.
[55] TAM C K W, BLOCK P J W. On the tones and pressure oscillations induced by flow over rectangular cavities[J]. Journal of Fluid Mechanics, 1978, 89(28): 373-399.
[56] HANDA T, MIYACHI H, KAKUNO H, et al. Modeling of a feedback mechanism in supersonic deep-cavity flows[J]. AIAA Journal, 2015, 53(2): 420-425.
[57] CHANDRA B U, CHAKRAVARTHY S R. Experimental investigation of cavity-induced acoustic oscillations in confined supersonic flow[J]. Journal of Fluids Engineering, 2005, 127(4): 761-769.
[58] ROCKWELL D, NAUDASCHER E. Self-sustaining oscillations of flow past cavities[J]. Journal of Fluids Engineering, 1978, 100(2): 152-165.
[59] ZHANG X, CHEN X X, RONA A, et al. Attenuation of cavity flow oscillation through leading edge flow control[J]. Journal of Sound and Vibration, 1999, 221(1): 23-47.
[60] MALHOTRA A, VAIDYANATHAN A. Aft wall offset effects on open cavities in confined supersonic flow[J]. Experimental Thermal and Fluid Science, 2016, 74: 411-428.
[61] UNALMIS O H. Cavity oscillation mechanisms in high-speed flows[J]. AIAA Journal, 2004, 42(10): 2035-2041.
[62] HELLER H H, HOLMES D G, COVERT E E. Flow-induced pressure oscillations in shallow cavities[J]. Journal of Sound and Vibration, 1971, 18(4): 545-553.
[63] HELLER H H, HOLMES G, COVERT E E. Flow-induced pressure oscillations in shallow cavities: AFFDL-TR-70-104[R]. Dayton, Ohio: Wright-Patterson Air Force Base, 1970.
[64] HAMED A, BASU D, DAS K. Effect of Reynolds number on the unsteady flow and acoustic fields of supersonic cavity[C]//ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference. New York: ASME, 2003: 1049-1054.
[65] 张群峰, 闫盼盼, 黎军. 边界层厚度对腔体气动声学特性影响数值模拟[J]. 航空动力学报, 2016, 31(3): 717-725. ZHANG Q F, YAN P P, LI J. Numerical simulation on influence of boundary-layer thickness on the cavity aero-acoustic characteristics[J]. Journal of Aerospace Power, 2016, 31(3): 717-725 (in Chinese).
[66] 刘俊, 杨党国, 王显圣, 等. 湍流边界层厚度对三维空腔流动的影响[J]. 航空学报, 2016, 37(2): 475-483. LIU J, YANG D G, WANG X S, et al. Effect of turbulent boundary layer thickness on a three-dimensional cavity flow[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(2): 475-483 (in Chinese).
[67] 杨党国, 李建强, 范召林, 等. 超声速来流边界层厚度对浅腔声学特性的影响[J]. 航空动力学报, 2010, 25(4): 907-911. YANG D G, LI J Q, FAN Z L, et al. Shallow cavity noise influencing by boundary-layer thickness at supersonic speeds[J]. Journal of Aerospace Power, 2010, 25(4): 907-911 (in Chinese).
[68] RONA A, DIEUDONN W. Unsteady laminar and turbulent cavity flow models by second order upwind methods: AIAA-1999-0656[R]. Reston, VA: AIAA, 1999.
[69] SCHMIT R, SEMMELMAYER F, HAVERKAMP M, et al. Examining passive flow control devices with high speed shadowgraph images around a Mach 1.5 cavity flow field: AIAA-2012-3139[R]. Reston, VA: AIAA, 2012.
[70] DUDLEY J G, UKEILEY L. Passively controlled supersonic cavity flow using a spanwise cylinder[J]. Experiments in Fluids, 2014, 55: 1810.
[71] UKEILEY L S, PONTON M K, SEINER J M, et al. Suppression of pressure loads in cavity flows[J]. AIAA Journal, 2004, 42(1): 70-79.
[72] DUDLEY J, UKEILEY L. Detached eddy simulation of a supersonic cavity flow with and without passive flow control: AIAA-2011-3844[R]. Reston, VA: AIAA, 2011.
[73] FLAHERTY W, REEDY T M, ELLIOTT G S, et al. Investigation of cavity flow using fast-response pressure-sensitive paint[J]. AIAA Journal, 2014, 52(11): 2462-2470.
[74] CHAUDHARI K, RAMAN G. Control of flow over a rectangular cavity using a rod in cross flow: further evaluation of key mechanisms: AIAA-2011-0037[R]. Reston, VA: AIAA, 2011.
[75] DIX R E, BAUER R C. Experimental and theoretical study of cavity acoustics: AEDC-TR-99-4[R]. 1999.
[76] MATSUO S, ALAM M M, SETOGUCHI T, et al. Passive control of cavity-induced pressure oscillations using sub-cavity[C]//Proceedings of the 8th International Symposium on Experimental and Computational Aerothermodynamics of Internal Flows, 2007: 1-8.
[77] LUO K, ZHE W, XIAO Z, et al. Improved delayed detached-eddy simulations of sawtooth spoiler control before supersonic cavity[J]. International Journal of Heat and Fluid Flow, 2017, 63: 172-189.
[78] VAKILI A D, GAUTHIER C. Control of cavity flow by upstream mass-injection[J]. Journal of Aircraft, 1994, 31(1): 169-174.
[79] THANGAMANI V, KURIAN J. Control of cavity oscillations in a supersonic flow by microjet injection[J]. Journal of Aircraft, 2013, 50(4): 1305-1309.
[80] FIEDLER H E, FERNHOLZ H H. On management and control of turbulent shear flows[J]. Progress in Aerospace Sciences, 1990, 27(4): 305-387.
[81] MORKOVIN M V, PARANJAPE S V. On acoustic excitation of shear layers[J]. Z. Flugwiss, 1971, 19: 328-335.
[82] IMAI T, ASAI M. Receptivity of the shear layer separating from a rear edge of flat plate[J]. Fluid Dynamics Research, 2009, 41(3): 035506.
[83] DANILOV P, QUACKENBUSH T. Flow driven oscillating vortex generators for control of cavity resonance: AIAA-2011-1219[R]. Reston, VA: AIAA, 2011.
[84] PANICKAR M B, MURRAY N E, JANSEN JR B J, et al. Reduction of noise generated by a half-open weapons bay[J]. Journal of Aircraft, 2013, 50(3): 716-724.
[85] LUSK T, CATTAFESTA L, UKEILEY L. Leading edge slot blowing on an open cavity in supersonic flow[J]. Experiments in Fluids, 2012, 53(1): 187-199.
[86] GEORGE B, UKEILEY L S, CATTAFESTA L N, et al. Control of three-dimensional cavity flow using leading-edge slot blowing: AIAA-2015-1059[R]. Reston, VA: AIAA, 2015.
[87] BUENO P, UNALMIS O, CLEMENS N, et al. The effects of upstream mass injection on a Mach 2 cavity flow: AIAA-2002-0663[R]. Reston, VA: AIAA, 2002.
[88] 王一丁, 郭亮, 童明波, 等. 高速飞行器空腔脉动压力主动控制与非线性数值模拟[J]. 航空学报, 2015, 36(1): 213-222. WANG Y D, GUO L, TONG M B, et al. Active control and nonlinear numerical simulation for oscillating pressure of high-speed aircraft cavity[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1): 213-222 (in Chinese).
[89] 房田文, 丁猛, 刘卫东, 等. 气液喷流与超声速凹腔流场的相互作用[J]. 推进技术, 2008, 29(3): 312-317. FANG T W, DING M, LIU W D, et al. Interaction between gas/liquid injection and supersonic flow over cavities[J]. Journal of Propulsion Technology, 2008, 29(3): 312-317.
[90] THIEMANN C L. An experimental study of supersonic cavity flow control with vertical rods[M]. Knoxville, TN: University of Tennesse, 2013: 30-35.
[91] 贾真, 吴迪, 朴英, 等. 凹腔前缘角对超声速燃烧室性能的影响[J]. 航空动力学报, 2012, 27(5): 993-998. JIA Z, WU D, PIAO Y,et al. Effect of cavity leading edge angle on performance of super-sonic combustor[J]. Journal of Aerospace Power, 2012, 27(5): 993-998 (in Chinese).
[92] GAI S L, KLEINE H, NEELY A J. Supersonic flow over a shallow open rectangular cavity[J]. Journal of Aircraft, 2015, 52(2): 609-616.
[93] MOON S J. Passive control of supersonic flow over straight cavities[M]. Sydney: University of New South Wales, 2008: 19-20.
[94] LEE Y, KANG M, KIM H, et al. Passive control techniques to alleviate supersonic cavity flow oscillation[J]. Journal of Propulsion and Power, 2008, 24(4): 697-703.
[95] THANGAMANI V, SADDINGTON A, KNOWLES K. An investigation of passive control methods for a large scale cavity model in high subsonic flow: AIAA-2013-2049[R]. Reston, VA: AIAA, 2013.
[96] WILLIAMS D R, CORNELIUS D, ROWLEY C W. Supersonic cavity response to open-loop forcing[M]//Active Flow Control. Heidelberg: Springer, 2007: 230-243.
[97] 宁方立, 史红兵, 丘廉芳, 等. 前缘高频振动对亚声速开式空腔内强噪声影响的数值研究[J]. 航空学报, 2015, 36(12): 3843-3852. NING F L, SHI H B, QIU L F, et al. Numerical research of high frequency vibration effect on the subsonic open cavity macro-noise[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(12): 3843-3852 (in Chinese).
[98] 宋文成, 李玉军, 冯强. 武器舱气动噪声主动流动控制技术风洞试验研究[J]. 空气动力学学报, 2016, 34(1): 33-39. SONG W C, LI Y J, FENG Q. Wind tunnel test research on weapon bay cavity active flow control for acoustic[J]. Acta Aerodynamica Sinica, 2016, 34(1): 33-39 (in Chinese).
[99] PEREIRA J C F, SOUSA J M M. Influence of impingement edge geometry on cavity flow oscillations[J]. AIAA Journal, 1994, 32(8): 1737-1740.
[100] VIKRAMADITYA N S, KURIAN J. Pressure oscillations from cavities with ramp[J]. AIAA Journal, 2009, 47(12): 2974-2984.
[101] SOEMARWOTO B I, KOK J C. Computations of three-dimensional unsteady supersonic cavity flow to study the effect of different downstream geometries: ADP014111[R]. Amsterdam: NLR-Netherlands Aerospace Centre, 2003.
Outlines

/