[1] KELLENBERGER M, CICCARELLI G. Propagation mechanisms of supersonic combustion waves[J]. Proceedings of the Combustion Institute, 2015, 35(2):2109-2116.
[2] GRINSTEIN F F, MARGOLIN L G, RIDER W J. Implicit large eddy simulation:Computing turbulent fluid dynamics[M]. Cambridge:Cambridge University Press, 2007:39-57.
[3] JANICKA J, SADIKI A. Large eddy simulation of turbulent combustion systems[J]. Proceedings of the Combustion Institute, 2005, 30(1):537-547.
[4] BOUDIER G, GICQUEL L Y M, POINSOT T, et al. Comparison of LES, RANS and experiments in an aeronautical gas turbine combustion chamber[J]. Proceedings of the Combustion Institute, 2007, 31(2):3075-3082.
[5] KRAVCHENKO A G, MOIN P. On the effect of numerical errors in large eddy simulations of turbulent flows[J]. Journal of Computational Physics, 1997, 131(2):310-322.
[6] COCKBURN B, HOU S, SHU C W. The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case[J]. Mathematics of Computation, 1990, 54(190):545-581.
[7] PESCH L, VAN DER VEGT J J. A discontinuous Galerkin finite element discretization of the Euler equations for compressible and incompressible fluids[J]. Journal of Computational Physics, 2008, 227(11):5426-5446.
[8] LV Y, IHME M. Discontinuous Galerkin method for multicomponent chemically reacting flows and combustion[J]. Journal of Computational Physics, 2014, 270:105-137.
[9] DONEA J. A Taylor-Galerkin method for convective transport problems[J]. International Journal for Numerical Methods in Engineering, 1984, 20(1):101-119.
[10] LÖHNER R, MORGAN K, ZIENKIEWICZ O C. An adaptive finite element procedure for compressible high speed flows[J]. Computer Methods in Applied Mechanics and Engineering, 1985, 51(1-3):441-465.
[11] COLIN O, RUDGYARD M. Development of high-order Taylor-Galerkin schemes for LES[J]. Journal of Computational Physics, 2000, 162(2):338-371.
[12] ROCHETTE B, COLLIN-BASTIANI F, GICQUEL L, et al. Influence of chemical schemes, numerical method and dynamic turbulent combustion modeling on LES of premixed turbulent flames[J]. Combustion and Flame, 2018, 191:417-430.
[13] SELLE L, LARTIGUE G, POINSOT T, et al. Compressible large eddy simulation of turbulent combustion in complex geometry on unstructured meshes[J]. Combustion and Flame, 2004, 137(4):489-505.
[14] WANG G, BOILEAU M, VEYNANTE D. Implementation of a dynamic thickened flame model for large eddy simulations of turbulent premixed combustion[J]. Combustion and Flame, 2011, 158(11):2199-2213.
[15] ROUX S, LARTIGUE G, POINSOT T, et al. Studies of mean and unsteady flow in a swirled combustor using experiments, acoustic analysis, and large eddy simulations[J]. Combustion and Flame, 2005, 141(1-2):40-54.
[16] MOUREAU V, LARTIGUE G, SOMMERER Y, et al. Numerical methods for unsteady compressible multi-component reacting flows on fixed and moving grids[J]. Journal of Computational Physics, 2005, 202(2):710-736.
[17] DAUPTAIN A, CUENOT B, POINSOT T J. Large eddy simulation of a supersonic hydrogen-air diffusion flame[C]//Proceedings of Complex Effects in Large Eddy Simulation, 2005:1-9.
[18] JIANG H, DONG G, CHEN X, et al. A parameterization of the Richtmyer-Meshkov instability on a premixed flame interface induced by the successive passages of shock waves[J]. Combustion and Flame, 2016, 169:229-241.
[19] ISHIHARA S, ISHⅡ K, KATAOKA H. Mechanism of detonation transition from accelerating flames in a channel[J]. Proceedings of the Combustion Institute, 2017, 36(2):2753-2759.
[20] KELLENBERGER M, CICCARELLI G. Advancements on the propagation mechanism of a detonation wave in an obstructed channel[J]. Combustion and Flame, 2018, 191:195-209.
[21] GOODWIN G B, HOUIM R W, ORAN E S. Shock transition to detonation in channels with obstacles[J]. Proceedings of the Combustion Institute, 2017, 36(2):2717-2724.
[22] WEI H, ZHAO J, ZHOU L, et al. Effects of the equivalence ratio on turbulent flame-shock interactions in a confined space[J]. Combustion and Flame, 2017, 186:247-262.
[23] MARK H. The Interaction of a reflected shock wave with the boundary layer in a shock tube:NACA TM 1418[R]. Washington, D.C.:NASA, 1958.
[24] WEBER Y S, ORAN E S, BORIS J P, et al. The numerical simulation of shock bifurcation near the end wall of a shock tube[J]. Physics of Fluids, 1995, 7(10):2475-2488.
[25] GAMEZO V N, KHOKHLOV A M, ORAN E S. The influence of shock bifurcations on shock-flame interactions and DDT[J]. Combustion and Flame, 2001, 126(4):1810-1826.
[26] ORAN E S, GAMEZO V N. Origins of the deflagration-to-detonation transition in gas-phase combustion[J]. Combustion and Flame, 2007, 148(1-2):4-47.
[27] DZIEMIŃSKA E, HAYASHI A K. Auto-ignition and DDT driven by shock wave-boundary layer interaction in oxyhydrogen mixture[J]. International Journal of Hydrogen Energy, 2013, 38(10):4185-4193.
[28] CAI X, LIANG J, DEITERDING R, et al. Experimental and numerical investigations on propagating modes of detonations:Detonation wave/boundary layer interaction[J]. Combustion and Flame, 2018, 190:201-215.
[29] SCOTTI A, MENEVEAU C, LILLY D K. Generalized Smagorinsky model for anisotropic grids[J]. Physics of Fluids A:Fluid Dynamics, 1993, 5(9):2306-2308.
[30] BUTLER T D, O'ROURKE P J. A numerical method for two dimensional unsteady reacting flows[C]//Symposium (International) on Combustion. Pittsburgh, PA:The Combustion Institute, 1977:1503-1515.
[31] COLIN O, DUCROS F, VEYNANTE D. A thickened flame model for large eddy simulations of turbulent premixed combustion[J]. Physics of Fluids, 2000, 12(7):1843-1863.
[32] DURAND L, POLIFKE W. Implementation of the thickened flame model for large eddy simulation of turbulent premixed combustion in a commercial solver:GT2007-28188[R]. New York:ASME, 2007:869-878.
[33] CHARLETTE F, MENEVEAU C, VEYNANTE D. A power-law flame wrinkling model for LES of premixed turbulent combustion Part I:Non-dynamic formulation and initial tests[J]. Combustion and Flame, 2002, 131(1-2):159-180.
[34] VON NEUMANN J, RICHTMYER R D. A method for the numerical calculation of hydrodynamic shocks[J]. Journal of Applied Physics, 1950, 21(3):232-237.
[35] JAMESON A, SCHMIDT W, TURKEL E. Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes:AIAA-1981-1259[R]. Reston, VA:AIAA, 1981.
[36] HUGHES T J, MALLET M. A new finite element formulation for computational fluid dynamics:IV. A discontinuity-capturing operator for multidimensional advective-diffusive systems[J]. Computer Methods in Applied Mechanics and Engineering, 1986, 58(3):329-336.
[37] COOK A W, CABOT W H. Hyperviscosity for shock-turbulence interactions[J]. Journal of Computational Physics, 2005, 203(2):379-385.
[38] SHU C W, OSHER S. Efficient implementation of essentially non-oscillatory shock-capturing schemes, Ⅱ. In upwind and high-resolution schemes[M]. Heidelberg:Springer, 1989:328-374.
[39] ADAMS N A, STOLZ S. A subgrid-scale deconvolution approach for shock capturing[J]. Journal of Computational Physics, 2002, 178(2):391-426.
[40] LV Y, IHME M. Discontinuous Galerkin method for multicomponent chemically reacting flows and combustion[J]. Journal of Computational Physics, 2014, 270:105-137.
[41] HAAS J F, STURTEVANT B. Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities[J]. Journal of Fluid Mechanics, 1987, 181:41-76.
[42] QUIRK J J, KARNI S. On the dynamics of a shock-bubble interaction[J]. Journal of Fluid Mechanics, 1996, 318:129-163.
[43] MATSUO K, KAWAGOE S, KAGE K. The interaction of a reflected shock wave with the boundary layer in a shock tube[J]. Bulletin of JSME, 1974, 17(110):1039-1046.