Fluid Mechanics and Flight Mechanics

Navier-Stokes/DSMC hybrid algorithm for hypersonic flows with chemical non-equilibrium

  • LI Zhonghua ,
  • DANG Leining ,
  • LI Zhihui
Expand
  • 1. Hypervelocity Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China;
    2. National Laboratory of Computational Fluid Dynamics, Beijing 100083, China

Received date: 2018-04-20

  Revised date: 2018-06-11

  Online published: 2018-06-25

Supported by

National Basic Research Program of China (2014CB744100); National Natural Science Foundation of China (91530319, 11325212)

Abstract

Based on the same chemical reaction model, an Navier-Stokes/Direct Simulation Monte Carlo (DSMC) hybrid algorithm with chemical non-equilibrium is proposed by using the Modular Particle-Continuum (MPC) technique using current Computational Fluid Dynamics (CFD) and DSMC methods. The DSMC region is selected automatically according to the CFD results in this hybrid scheme based on local Knudson numbers. A sub-relax technique for information exchange between CFD and DSMC is developed to restrain the effect of statistical fluctuation from DSMC to CFD. This extends the application of the DSMC and the CFD method, and provides an approach to predict the chemical non-equilibrium characteristics in the near-continuum transition flow regime. The hypersonic flow with chemical non-equilibrium around a 2D cylinder is simulated by the Navier-Stokes/DSMC hybrid method proposed. A comparison of the simulation result obtained with the method proposed and that with other methods shows that the results obtained with the method proposed are good agreement with the results obtained with full DSMC in terms of flow structure, non-equilibrium phenomenon, surface parameters and aerodynamics characteristics. This verifies the adaptability and reliability of the proposed Navier-Stokes/DSMC hybrid algorithm in simulating hypersonic flows for the transition flow regime. The chemical non-equilibrium flows around a fragment from a disintegrated aerocraft are simulated to obtain the aerodynamic force and thermal characteristics of the fragment in the transition region, thus providing some reference for simulation of fragment fall.

Cite this article

LI Zhonghua , DANG Leining , LI Zhihui . Navier-Stokes/DSMC hybrid algorithm for hypersonic flows with chemical non-equilibrium[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018 , 39(10) : 122229 -122229 . DOI: 10.7527/S1000-6893.2018.22229

References

[1] SCHWANEKAMP T, BÜTÜNLEY J, SIPPEL M. Preliminary multidisciplinary design studies on an upgraded 100 passenger SpaceLiner derivative:AIAA-2012-5808[R]. Reston, VA:AIAA, 2012.
[2] SIPPEL M, SCHWANEKAMP T, BAUSER C. Technical maturation of the SpaceLiner concept:AIAA-2012-5850[R]. Reston, VA:AIAA, 2012.
[3] HOLDEN M S, WADHAMS T P, MACLEAN M, et al. Experimental studies in LENS I and X to evaluate real gas effects on hypervelocity vehicle performance:AIAA-2007-0204[R]. Reston, VA:AIAA, 2007.
[4] PRABHU D K, PAPADOPOULOS P E, DAVIES C B, et al. Shuttle orbiter contingency abort aerodynamics Ⅱ:Real-gas effects and high angles of attack:AIAA-2003-1248[R]. Reston, VA:AIAA, 2003.
[5] HANNAN B. Thermo-chemical nonequilibrium effects on the aerothermodynamics of hypersonic vehicles[D]. Raleigh, NC:North Carolina State University, 1993:37-56.
[6] BONNIE J M, MICHAEL J Z, SANFORD G. NASA Glenn coefficients for calculating thermodynamic properties of individual species:NASA/TP-2002-211556[R].Washington, D.C.:NASA, 2002.
[7] BLOTTNER F G, JOHNSON M, ELLIS M. Chemically reacting viscous flow program for multi-component gas mixtures:SC-RR-70-754[R]. Albuquerque, NM:Sandia National Laboratories, 1971.
[8] ANDERSON J D. Hypersonic and high-temperature gas dynamics[M]. Reston, VA:AIAA, 2006:575-597.
[9] WRIGHT M J, CANDLER G V, PRAMPOLINI M. Data-parallel lower-upper relaxation method for the Navier-Stokes equations[J]. AIAA Journal, 1996, 34(7):1371-1377.
[10] 张涵信, 陈坚强, 高树椿. H2/O2燃烧的超声速非平衡流动的数值模拟[J]. 宇航学报, 1994, 15(2):14-23. ZHANG H X, CHEN J Q, GAO S C. Numerical simulation of supersonic nonequilibrium flows for H2/O2 combustions[J]. Journal of Astronautics, 1994, 15(2):14-23(in Chinese).
[11] 刘君. 非平衡流计算方法及其模拟激波诱导振荡燃烧[J]. 空气动力学学报, 2003, 21(1):53-58. LIU J. A new nonequilibrium numerical method and simulation of oscillating shock-induced combustion[J]. Acta Aerodynamica Sinica, 2003, 21(1):53-58(in Chinese).
[12] 李海燕. 高超声速高温气体流场的数值模拟[D].绵阳:中国空气动力研究与发展中心, 2007:63-64. LI H Y. Numerical simulation of hypersonic high temperature flowfield[D]. Mianyang:China Aerodynamics Research and Development Center, 2007:63-64(in Chinese).
[13] BIRD G A. Molecular gas dynamics and the direct simulation of gas flows[M]. London:Oxford Univisity Press, 1994:123-146.
[14] WEN C Y, CHEN Y S, LIANG S M, et al. Numerical simulations of nonequilibrium flows over rounded models at reentry speeds:AIAA-2012-5906[R]. Reston, VA:AIAA, 2012.
[15] BIRD G A. Approach to transitional equilibrium in a rigid sphere gas[J]. Physics of Fluids, 1963, 6(10):1518-1519.
[16] ALEXANDER F J, GARCIA A L. The direct simulation Monte Carlo method[J]. Computers in Physics, 1997, 11(6):588-593.
[17] BONDAR Y A, SHEVYRIN A A. DSMC modeling of high-temperature chemical reactions in air:AIAA-2011-3128[R]. Reston, VA:AIAA, 2011.
[18] 沈青. 稀薄气体动力学[M]. 北京:国防工业出版社, 2003:228-275. SHEN Q. Rarefied gas dynamics[M]. Beijing:National Defence Industry Press, 2003:228-275(in Chinese).
[19] 陈伟芳, 吴明巧, 任兵. DSMC/EPSM混合算法研究[J]. 计算力学学报, 2003, 20(3):274-278. CHEN W F, WU M Q, REN B. On study of hybrid DSMC/EPSM method[J]. Chinese Journal of Computational Mechanics, 2003, 20(3):274-278(in Chinese).
[20] 方明. 极高速再入条件下稀薄气体电离热化学非平衡绕流DSMC方法与应用研究[D]. 北京:北京航空航天大学, 2016:30-41. FANG M. Study on DSMC method and application of thermal-chemical ionized non-equilibrium flows during hypervelocity reentry[D]. Beijing:Beihang University, 2016:30-41(in Chinese).
[21] KOPPENWALLNER G, LEGGE H. Drag of bodies in rarefied hypersonic flow:AIAA-1985-0998[R]. Reston, VA:AIAA, 1985.
[22] BOYD I D. Predicting the breakdown of the continuum equations under rarefied flow conditions[C]//Proceedings of the 23th International Symposium on Rarefied Gas Dynamics. College Park, MD:American Institute of Physics, 2003:899-906.
[23] LI Z H, ZHANG H X. Study on gas kinetic unified algorithm for flows from rarefied transition to continuum[J]. Journal of Computational Physics, 2004, 193(2):708-738.
[24] LI Z H, FANG M, WU J L, et al. Convergence proof of the DSMC method and the gas-kinetic unified algorithm for the Boltzmann equation[J]. Science China Physics, Mechanics & Astronomy, 2013, 56(2):404-417.
[25] LI Z H, ZHANG H X, FU S, et al. A gas kinetic algorithm for flows in microchannel[J]. International Journal of Nonlinear Sciences and Numerical Simulation, 2005, 6(3):261-270.
[26] WU J L, LI Z H, PENG A P, et al. Numerical simulations of unsteady flows from rarefied transition to continuum using gas-kinetic unified algorithm[J]. Advances in Applied Mathematics and Mechanics, 2015, 7(5):569-596.
[27] WU J L, LI Z H, PENG A P, et al. Numerical study on rarefied unsteady jet flow expanding into vacuum using gas-kinetic unified algorithm[J]. Computers and Fluids, 2017, 155:50-61.
[28] WADSWORTH D C, ERWIN D A. Two-dimensional hybrid continuum/particle approach for rarefied flows:AIAA-1992-2975[R]. Reston, VA:AIAA, 1992.
[29] HASH D B, HASSAN H A. A hybrid DSMC/Navier-Stokes solver:AIAA-1995-0410[R]. Reston, VA:AIAA, 1995.
[30] SCHWARTZENTRUBER T E, SCALABRIN L C, BOYD I D. Modular implementation of a hybrid DSMC-NS algorithm for hypersonic non-equilibrium flows:AIAA-2007-0613[R]. Reston, VA:AIAA, 2007.
[31] SCHWARTZENTRUBER T E, SCALABRIN L C, BOYD I D. Hybrid particle-continuum simulations of low Knudsen number hypersonic flows:AIAA-2007-3892[R]. Reston, VA:AIAA, 2007.
[32] BURT J M, BOYD I D. A multiscale particle approach for continuum/rarefied flow simulation:AIAA-2008-1184[R]. Reston, VA:AIAA, 2008.
[33] CARLSON H A, BOYD I D, CANDLER G. A hybrid CFD-DSMC method of modeling continuum-rarefied flows:AIAA-2004-1180[R]. Reston, VA:AIAA, 2004.
[34] BURT J M, BOYD I D. A hybrid particle approach for continuum and rarefied flow simulation[J]. Journal of Computational Physics, 2009, 228(2):460-475.
[35] LI Z H, LI Z H, LI H Y, et al. Application of hybrid N-S/DSMC method in hypersonic transitional flow[C]//Proceedings of the 28th International Symposium on Rarefied Gas Dynamics. College Park, MD:American Institute of Physics, 2012:435-442.
[36] LI Z H, LI Z H, LI H Y, et al. N-S/DSMC hybrid simulation of hypersonic flow over blunt body including wakes[C]//Proceedings of the 29th International Symposium on Rarefied Gas Dynamics. College Park, MD:American Institute of Physics, 2014:519-526.
[37] 李中华, 李志辉, 李海燕, 等. 过渡流区NS/DSMC耦合算法研究[J]. 空气动力学学报, 2013, 31(3):282-287. LI Z H, LI Z H, LI H Y, et al. Research of CFD/DSMC hybrid numerical method in rarefied flow[J]. Acta Aerodynamica Sinica, 2013, 31(3):282-287(in Chinese).
[38] WANG W L. A hybrid particle/continuum Approach for nonequilibrium hypersonic flows[D]. Ann Arbor, MI:University of Michigan, 2004:96-106.
[39] DESCHENES T R, BOYD I D. Extension of a modular particle-continuum method to vibrationally excited, hypersonic flows[J]. AIAA Journal, 2011, 49(9):1951-1959.
[40] DESCHENES T R, BOYD I D, SCHWARTZENTRUBER T E. Incorporating vibrational excitation in a hybrid particle-continuum method:AIAA-2008-4106[R]. Reston, VA:AIAA, 2008.
[41] GARCIA A L, ALDER B J. Generation of the Chapman-Enskog distribution[J]. Journal of Computational Physics, 1998, 140(1):66-77.
Outlines

/