The Direct Position Determination (DPD) algorithm can offer higher estimation accuracy, but is accompanied by serious computation load. To solve this problem, this paper proposes a novel DPD algorithm based on Modified Cubature Kalman Filter (MCKF). First, a direct positioning filtering model based on the direction of arrival information of the received signals is developed with the subspace data fusion method. Then, an MCKF is proposed to solve the problem of noise accumulation caused by indirect observation. Finally, the computational complexity of the algorithm is analyzed to illustrate its efficiency. Simulation results show that compared with the DPD algorithms based on maximum likelihood exhaustive search and genetic algorithm, the proposed algorithm can significantly reduce computation load and improve timeliness while maintaining the same estimation accuracy, showing great applicability in practice.
LU Zhiyu
,
WANG Jianhui
,
BA Bin
,
WANG Daming
. Direct position determination algorithm based on modified cubature Kalman filter[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018
, 39(9)
: 322031
-322038
.
DOI: 10.7527/S1000-6893.2018.22031
[1] 巴斌, 刘国春, 李韬, 等. 基于哈达玛积扩展子空间的到达时间和波达方向联合估计[J]. 物理学报, 2015, 64(7):384-392. BA B, LIU G C, LI T, et al. Joint for time of arrival and direction of arrival estimation algorithm based on the subspace of extended Hadamard product[J]. Acta Physica Sinica, 2015, 64(7):384-392(in Chinese).
[2] 冷雪冬, 巴斌, 逯志宇, 等. 基于回溯筛选的稀疏重构时延估计算法[J]. 物理学报, 2016, 65(21):701-710. LENG X D, BA B, LU Z Y, et al. Sparse reconstruction time delay estimation algorithm based on backtracking filter[J]. Acta Physica Sinica, 2016, 65(21):701-710(in Chinese).
[3] WANG G, LI Y, NIRWAN A. A semidefinite relaxation method for source localization using TDOA and FDOA measurements[J]. IEEE Transactions on Vehicular Technology, 2013, 62(2):853-855.
[4] BOSSE J, FERRōOL A, LARZABAL P. Performance analysis of passive localization strategies:Direct one step approach versus 2 steps approach[C]//IEEE Statistical Signal Processing (SSP) Workshop. Piscataway, NJ:IEEE Press, 2011:701-704.
[5] WEISS A J. Direct position determination of narrowband radio frequency transmitters[J]. IEEE Signal Processing Letters, 2004, 11(5):513-516.
[6] TIRER T, WEISS A J. High resolution direct position determination of radio frequency sources[J]. IEEE Signal Processing Letters, 2016, 23(2):192-197.
[7] 王鼎, 张瑞杰, 张涛. 一种阵列互耦影响下的目标直接定位算法及其理论性能分析[J]. 电子学报, 2017, 45(5):1130-1138. WANG D, ZHANG R J, ZHANG T. A direct position determination approach for radio emitters in presence of mutual coupling[J]. Acta Electronica Sinica, 2017, 45(5):1130-1138(in Chinese).
[8] WEISS A J, AMAR A. Direct position determination of multiple radio signals[J]. EURASIP Journal on Advances in Signal Processing, 2005(1):37-49.
[9] AMAR A, WEISS A J. Localization of narrowband radio emitters based on doppler frequency shifts[J]. IEEE Transactions on Signal Processing, 2008, 56(11):5500-5508.
[10] LI J Z, WANG L, GUO F C, et al. Coherent summation of multiple short-time signals for direct positioning of a wideband source based on delay and Doppler[J]. Digital Signal Processing, 2015, 48(1):58-70.
[11] 逯志宇, 任衍青, 巴斌, 等. 基于分段信号相关累加的变速度多站联合直接定位方法[J]. 物理学报, 2017, 66(2):70-79. LU Z Y, REN Y Q, BA B, et al. An improved direct position determination method based on correlation accumulation of short-time signals with variable velocity receivers[J]. Acta Physica Sinica, 2017, 66(2):70-79(in Chinese).
[12] YIN J X, WU Y, WANG D. Direct position determination of multiple noncircular sources with a moving array[J]. Circuits, Systems, amd Signal Processing, 2017, 36(10):4050-4076.
[13] LU Z Y, WANG J H, BA B. A novel direct position determination algorithm for orthogonal frequency division multiplexing signals based on the time and angle of arrival[J]. IEEE Access, 2017, 99:1-10.
[14] POURHOMAYOUN M, FOWLER M L. Sensor network distributed computation for direct position determination[C]//Sensor Array and Multichannel Signal Processing Workshop (SAM). Piscataway, NJ:IEEE Press, 2012:125-128.
[15] DEMISSIE B, OISPUU M, RUTHOTTO E. Localization of multiple sources with a moving array using subspace data fusion[C]//Proceedings of the ISIF 11th International Conference on Information Fusion. Piscataway, NJ:IEEE Press, 2008:131-137.
[16] JIANG W, XIA W, ZHONG S. Variable step-size normalized adaptive direct position determination by alternate iteration[C]//2014 IEEE China Summit & International Conference on Signal and Information Processing (ChinaSIP). Piscataway, NJ:IEEE Press, 2014:772-776.
[17] TZOREFF E, WEISS A J. Expectation-maximization algorithm for direct position determination[J]. Signal Processing, 2016, 133:32-39.
[18] 任衍青, 逯志宇, 巴斌, 等. 锐化遗传直接定位快速估计算法[J]. 西安电子科技大学学报, 2017, 44(4):144-150. REN Y Q, LU Z Y, BA B, et al. Fast direct position determination method based on the sharpening function genetic algorithm[J]. Journal of Xidian University, 2017, 44(4):144-150(in Chinese).
[19] 逯志宇, 王大鸣, 王建辉, 等. 基于时频差的正交容积卡尔曼滤波跟踪算法[J]. 物理学报, 2015, 64(15):25-32. LU Z Y, WANG D M, WANG J H, et al. A tracking algorithm based on orthogonal cubature Kalman filter with TDOA and FDOA[J]. Acta Physica Sinica, 2015, 64(15):25-32(in Chinese).
[20] 魏喜庆, 宋申民. 基于容积卡尔曼滤波的卫星姿态估计[J]. 宇航学报, 2013, 34(2):193-194. WEI X Q, SONG S M. Cubature Kalman filter based satellite attitude estimation[J]. Journa1 of Astronautics, 2013, 34(2):193-194(in Chinese).