Electronics and Electrical Engineering and Control

Transporting trajectory optimization method for large space manipulator system

  • JIE Dangyang ,
  • LU Haoran ,
  • WU Hanling ,
  • NI Fenglei
Expand
  • 1. Beijing Institute of Aerospace System Engineering, Beijing 100076, China;
    2. State Key Laboratory of Robotics and Systems, Harbin 150001, China

Received date: 2018-05-21

  Revised date: 2018-06-11

  Online published: 2018-06-09

Abstract

The large space manipulator which is assembled on the space station will bring attitude reactions to the space station in moving or assembling tens of tons objects process. To resolve this problem, a new Cartesian trajectory optimization method was proposed. The attitude disturbance control of base is realized by using the decomposition and velocity control and optimization algorithm based on the Generalized Jacobian Matrix (GJM). An objective function was established for measuring the variation of the space station attitude. Based on the consideration of the joints angle and the influence of dynamic singularity. By using Particle Swarm Optimization (PSO) method for the objective function, the attitude influence on space station was reduced significantly. The validity of the algorithm was verified by simulation results.

Cite this article

JIE Dangyang , LU Haoran , WU Hanling , NI Fenglei . Transporting trajectory optimization method for large space manipulator system[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018 , 39(S1) : 722352 -722352 . DOI: 10.7527/S1000-6893.2018.22352

References

[1] 张福海, 付宜利, 王树国. 惯性参数不确定的自由漂浮空间机器人自适应控制研究[J]. 航空学报, 2012, 33(12):2347-2354. ZHANG F H, FU Y L, WANG S G. Adaptive control of free-floating space robot with inertia parameter uncertainties[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(12):2347-2354(in Chinese).
[2] 陈力, 刘延柱. 参数不确定空间机械臂系统的增广自适应控制[J]. 航空学报, 2000, 21(2):150-154. CHEN L, LIU Y Z. Adaptive control of space-based manipulator with uncertain parameters[J]. Acta Aeronautica et Astronautica Sinica, 2000, 21(2):150-154(in Chinese).
[3] LONGMAN R W, LINDBERG R E, ZEDD M F. Satellite-mounted robot manipulators-New kinematics and reaction moment compensation[J]. International Journal of Robotics Research, 1987, 6(3):87-103.
[4] LONGMAN R W, LINDBERG R E, ZEDD M F. Kinematics and reaction moment compensation for a space borne elbow manipulator[C]//AIAA 24th Aerospace Science Meeting. Reton, VA:AIAA, 1986:32-39.
[5] LONGMAN R W. The kinematics and workspace of a satellite-mounted robot[J]. Journal of the Astronautical Science, 1990, 38(4):423-440.
[6] VAFA Z, DUBOWSKY S. On the dynamics of manipulator in space using the virtural manipualtor approach[C]//Proceeding of IEEE International Conference on Robotics and Automation. Piscataway, NJ:IEEE Press, 1987:136-143.
[7] VAFA Z, DUBOWSKY S. The kinematics and dynamics of space manipulator:The virtual manipulator approach[J]. International Journal of Robotics Research, 1990, 9(4):3-21.
[8] VAFA Z, DUBOWSKY S. Minimization of spacecraft disturbance in space robotics system[C]//Proceeding of 11th Annual ASS Guidance and Control Conference. Piscataway, NJ:IEEE Press, 1988:136-143.
[9] VAFA Z, DUBOWSKY S. On the dynamics of space manipulator using virtual manipulator, with application to path planning[J]. Journal of the Astronautical Science, 1990, 38(4):441-472.
[10] VAFA Z. The kinematics, dynamics and control of space manipulator:The virtual manipulator concept[D]. Massachusetts:Massachusetts Institute of Technology, 1987:1-78.
[11] DUBOWSKY S, TORRES M A. Path planning for space manipulator to minimize spacecraft attitude disturbances[C]//Proceeding of IEEE International Conference on Robotics and Automation. Piscataway, NJ:IEEE Press, 1991:2522-2528.
[12] PAPADOPOULOS E. Path planning for space manipulator exhibiting nonholonomic behavior[C]//Proceeding of IEEE/RSJ International Conference on Robotics and System. Piscataway, NJ:IEEE Press, 1992:1502-1511.
[13] UMETANI Y, YOSHIDA K. Resolved motion rate control of space manipulators with generalized Jacobian matrix[J]. IEEE Transactions on Robotics and Automation, 1989, 5(3):3003-3014.
[14] 周邦召. 自由漂浮空间机器人自主抓捕目标的方法研究[M]. 哈尔滨:哈尔滨工业大学, 2016:48-58. ZHOU B Z. Research on the method for autonomous target capturing of free-floating space robot[M]. Harbin:Harbin Institute of Technology, 2016:48-58(in Chinese).
[15] 王志刚. 融合多源信息的空间机械臂目标检测定位及路径规划[D]. 南京:南京航空航天大学, 2016:51-64. WANG Z G. Object detection and localization based on fusing multi-source information and path planning of space manipulator[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2016:51-64(in Chinese).
[16] 陈钢, 张龙, 贾庆轩. 基于主任务零空间的空间机械臂重复运动规划[J]. 宇航学报, 2013, 34(8):1063-1071. CHEN G, ZHANG L, JIA Q X. Repetitive motion planning for space manipulator based on null space of primary task[J]. Journal of Astronautics, 2013, 34(8):1063-1071(in Chinese).
[17] 蒙波, 伊成俊, 韩潮. 基于多目标粒子群算法的导航星座优化设计[J]. 航空学报, 2009, 30(7):1284-1291. MENG B, YIN C J, HAN C. Optimization of navigation satellite constellation by multi-objective particle swarm algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(7):1284-1291.
[18] 邢杰, 萧德云. 混合粒子群优化算法及其应用[J]. 化工学报, 2008, 59(7):1707-1710. XING J, XIAO D Y. Hybrid particle swarm optimization and its application[J]. Journal of Chemical Industry and Engineering, 2008, 59(7):1707-1710(in Chinese).
[19] 李策. 基于自适应粒子群算法的特征选择研究[D].南京:南京邮电大学, 2017:32-45. LI C. The feature selection based on adaptive particle swam optimization[D]. Nanjing:Nanjing University of Posts and Telecommunications, 2017:32-45(in Chinese).
[20] 李心. 基于改进粒子群蚁群融合算法的智能移动机器人路径规划研究[M]. 沈阳:东北大学, 2014:41-53. LI X. Intelligent robot path planning based on improved particle swarm optimization and ant colony algorithm[M]. Shenyang:Northeastern University, 2014:41-53(in Chinese).
Outlines

/