[1] MEEKER W Q, ESCOBAR A. Statistical methods for reliability data[M]. Hoboken, NJ:John Wiley & Sons, 1998:630-640.
[2] WANG X, XU D. An inverse Gaussian process model for degradation data[J]. Technometrics, 2010, 52(2):188-197.
[3] YE Z S, CHEN N. The inverse Gaussian process as degradation model[J]. Technometrics, 2014, 56(3):302-311.
[4] ZIO E. Some challenges and opportunities in reliability engineering[J]. IEEE Transactions on Reliability, 2016, 65(4):1769-1782.
[5] 王浩伟, 滕克难. 基于加速退化数据的可靠度评估技术综述[J]. 系统工程与电子技术, 2017, 39(12):2877-2885. WANG H W, TENG K N. Review of reliability evaluation technology based on accelerated degradation data[J]. System Engineering and Electronics, 2017, 39(12):2877-2885(in Chinese).
[6] LIU L, LI X Y, ZIO E, et al. Model uncertainty in accelerated degradation testing analysis[J]. IEEE Transactions on Reliability, 2017, 66(3):603-615.
[7] 王浩伟, 徐廷学, 王伟亚. 基于退化模型的失效机理一致性检验方法[J]. 航空学报, 2015, 36(3):889-897. WANG H W, XU T X, WANG W Y. Test method of failure mechanism consistency based on degradation model[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(3):889-897(in Chinese).
[8] YE Z S, CHEN L P, TANG L C, et al. Accelerated degradation test planning using the inverse Gaussian process[J]. IEEE Transactions on Reliability, 2014, 63(3):750-763.
[9] LI X Y, HU Y Q, ZIO E, et al. A Bayesian optimal design for accelerated degradation testing based on the inverse Gaussian process[J]. IEEE Access, 2017, 5:5690-5701.
[10] LING M H, TSUI K L, BALAKRISHNAN N. Accelerated degradation analysis for the quality of a system based on the Gamma process[J]. IEEE Transactions on Reliability, 2015, 64(1):463-472.
[11] TSAI C C, LIN C T. Lifetime inference for highly reliable products based on skew-normal accelerated destructive degradation test model[J]. IEEE Transactions on Reliability, 2015, 64(4):1340-1355.
[12] ZHANG J P, LI W B, CHENG G L, et al. Life prediction of OLED for constant-stress accelerated degradation tests using luminance decaying model[J]. Journal of Luminescence, 2014, 154:491-495.
[13] AO D, HU Z, MAHADEVAN S. Design of validation experiments for life prediction models[J]. Reliability Engineering and System Safety, 2017, 165:22-33.
[14] YAO J, XU M, ZHONG W. Research of step-down stress accelerated degradation data assessment method of a certain type of missile tank[J]. Chinese Journal of Aeronautics, 2012, 25(6):917-924.
[15] WANG H W, XU T X, MI Q L. Lifetime prediction based on Gamma processes from accelerated degradation data[J]. Chinese Journal of Aeronautics, 2015, 28(1):172-179.
[16] LING Y, MAHADEVAN S. Quantitative model validation techniques:New insights[J]. Reliability Engineering and System Safety, 2013, 111:217-231.
[17] 许丹, 陈志军, 王前程, 等. 基于空间相似性和波动阈值的退化模型一致性检验方法[J]. 系统工程与电子技术, 2015, 37(2):455-459. XU D, CHEN Z J, WANG Q C, et al. Method for consistency check of degradation model based on spatial similarity and fluctuation threshold[J]. Systems Engineering and Electronics, 2015, 37(2):455-459(in Chinese).
[18] SI X S, WANG W B, CHEN M Y, et al. A degradation path-dependent approach for remaining useful life estimation with an exact and closed-form solution[J]. European Journal of Operational Research, 2013, 226(1):53-66.
[19] YE Z S, CHEN N, SHEN Y. A new class of Wiener process model for degradation analysis[J]. Reliability Engineering and System Safety, 2015, 139:58-67.
[20] 王浩伟, 滕克难, 李军亮. 随机环境应力冲击下基于多参数相关退化的导弹部件寿命预测[J]. 航空学报, 2016, 37(11):3404-3412. WANG H W, TENG K N, LI J L. Lifetime prediction for missile components based on multiple parameters correlative degrading with random shocks of environmental stresses[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11):3404-3412(in Chinese).
[21] FRANK J, MARTIN K, BERND B. Selection of acceleration models for test planning and model usage[J]. IEEE Transactions on Reliability, 2017, 66(2):298-308.
[22] PARK C, PADGETT W J. Stochastic degradation models with several accelerating variables[J]. IEEE Transactions on Reliability, 2006, 55(2):379-390.
[23] LIM H, YUM B J. Optimal design of accelerated degradation tests based on Wiener process models[J]. Journal of Applied Statistics, 2011, 38(2):309-325.
[24] WHITMORE G A, SCHENKELBERG F. Modelling accelerated degradation data using Wiener diffusion with a time scale transformation[J]. Lifetime Data Analysis, 1997, 3(1):27-45.
[25] LIAO H T, ELSAYED E A. Reliability inference for field conditions from accelerated degradation testing[J]. Naval Research Logistics, 2006, 53:576-587.
[26] WANG H W, XI W J. Acceleration factor constant principle and the application under ADT[J]. Quality and Reliability Engineering International, 2016, 32(7):2591-2600.
[27] 王浩伟, 滕克难, 盖炳良. 基于加速因子不变原则的加速退化数据分析方法[J]. 电子学报, 2018, 46(3):739-747. WANG H W, TENG K N, GAI B L. The method of analyzing accelerated degradation data based on acceleration factor constant principle[J]. Acta Electronica Sinica, 2018, 46(3):739-747(in Chinese).
[28] ONAR A, PADGETT W J. Accelerated test models with the inverse Gaussian distribution[J]. Journal of Statistical Planning and Inference, 2000, 89(1-2):119-133.
[29] PENG C Y. Inverse Gaussian processes with random effects and explanatory variables for degradation data[J]. Technometrics, 2015, 57(1):100-111.
[30] EVANS D L, DREW J H, LEEMIS L M. The distribution of the Kolmogorov-Smirnov, Cramer-von Mises, and Anderson-Darling test statistics for exponential populations with estimated parameters[J]. Communication in Statistics-Simulation and Computation, 2008, 37(7):1396-1421.
[31] RAZALI N M, WAH Y B. Power comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests[J]. Journal of Statistical Modeling and Analytics, 2011, 2(1):21-33.