Material Engineering and Mechanical Manufacturing

State expansion adaptive stabilization control of space manipulator with variable mass characteristics under on-orbit refuelling task

  • QIN Li ,
  • YAN Lili ,
  • LIU Fucai ,
  • LIANG Bo
Expand
  • 1. School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China;
    2. School of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004, China

Received date: 2018-01-31

  Revised date: 2018-04-16

  Online published: 2018-06-01

Supported by

Young Scientists Fund of the National Natural Science Foundation of China (51605415); Pre-Research Project for Manned Space Flight (040301); the Natural Science Foundation of Hebei Province, China (F2016203494, F2015203362)

Abstract

On-orbit refuelling based on module replacement involves various operations such as docking and separation of spacecraft and disassembly and assembly of propellant modules, and are oriented towards many different types of spacecrafts and many sizes of propellant modules. The development phase needs to consider the complex changes in mass characteristics, and the fact that the whole cycle, ergodic task-level micro-gravity simulation test in ground validation is difficult to achieve. Considering these problems, this paper firstly analyzes the influence of changes in load and base mass characteristics on the dynamic characteristics and control performance of the system. Then, to realize the adaptability to the changing control objects and environment in the process of operation task, the adaptive law of gravity acceleration g is designed based on inertia matrix decomposition and gravity load matrix linearization, and the system state variables are extended to establish the Hamiltonian model of the system. Furthermore, based on the idea of passive control of energy function shaping and damping injection, the control law of presetting stabilization is designed, and a control scheme of adaptive stabilization of system nonlinearity under different working conditions is proposed. The simulation results verify the effectiveness of the proposed control scheme.

Cite this article

QIN Li , YAN Lili , LIU Fucai , LIANG Bo . State expansion adaptive stabilization control of space manipulator with variable mass characteristics under on-orbit refuelling task[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018 , 39(10) : 422070 -422070 . DOI: 10.7527/S1000-6893.2018.22070

References

[1] 饶大林, 闫指江, 王书廷, 等. 常规推进剂在轨加注技术研究现状与趋势[J]. 导弹与航天运载技术, 2015(5):50-54. RAO D L, YAN Z J, WANG S Y, et al. Current situation and trend analysis on orbital refueling technology for storable propellants[J]. Missiles and Space Vehicles, 2015(5):50-54(in Chinese).
[2] KAISER C, SJOBERG F, DELCURA J M, et al. An orbital life extension vehicle for servicing commercial spacecrafts in GEO[J]. Acta Astronautica, 2008, 63(1-4):400-410.
[3] REED B B, DEWEESE K, KIENLEN M, et al. SEL2 serving:Increased science return via on-orbit propellant replenishment[C]//SPIE Astronomical Telescopes and Instrumentation. Edinburgh, United Kingdom, 2016:99041N.
[4] MEDINA A, TOMASSINI A, SUATONI M, et al. Towards a standardized grasping and refuelling on-orbit servicing for GEO spacecraft[J]. Acta Astronautica, 2017, 134:1-10.
[5] HOST P. ViviSat markets mission extension vehicle to extend satellite life[J]. Defense Daily, 2012, 254(37):1-10.
[6] JURADO R, GAVALDA J, SIMON M J, et al. Some considerations on the vibrational environment of the DSC-DCMIX1 experiment onboard ISS[J]. Acta Astronautica, 2016, 129:345-356.
[7] MARTIN T, PEROT E, DESJEAN M C, et al. Active debris removal mission design in low earth orbit[J]. Eucass Proceedings, 2013, 4:763-788.
[8] LUO J, ZONG L, WANG M, et al. Optimal capture occasion determination and trajectory generation for space robots grasping tumbling objects[J]. Acta Astronautica, 2017, 136:380-386.
[9] ICHEN X Q, YU J. Optimal mission planning of GEO on-orbit refueling in mixed strategy[J]. Acta Astronautica, 2017, 133:63-72.
[10] WOLFF R, PREUSHE C, GEMST A. A modular architecture for an interactive real-time simulation and training environment for satellite on-orbit servicing[J]. Journal of Simulation, 2014, 8(1):50-63.
[11] 孙俊, 张世杰, 马也, 等. 空间非合作目标惯性参数的Adaline网络辨识方法[J]. 航空学报, 2016, 37(9):2799-2808. SUN J, ZHANG S J, MA Y, et al. Adaline network-based identification method of inertial parameters for space uncooperative targets[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(9):2799-2808(in Chinese).
[12] 路勇, 刘晓光, 周宇, 等. 空间翻滚非合作目标消旋技术发展综述[J]. 航空学报, 2018, 39(1):38-50. LU Y, LIU X G, ZHOU Y, et al. Review of detumbling technologies for active removal of uncooperative targets[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(1):38-50(in Chinese).
[13] 王东科, 黄攀峰, 孟中杰, 等. 空间绳系机器人抓捕后复合体姿态协调控制[J]. 航空学报, 2013, 34(8):1998-2006. WANG D K, HUANG P F, MENG Z J, et al. Coordinated attitude control of the combination system after target capture by a tethered space robot[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(8):1998-2006(in Chinese).
[14] WANG L J, MENG B. Characteristic model-based control of robotic manipulators with dynamic uncertainties[J]. Science China Information Sciences, 2017, 60(7):079201.
[15] 张文辉, 刘文艺, 叶晓平, 等. 自由漂浮空间机械臂基于神经网络的鲁棒自适应控制[J]. 机械工程学报, 2012, 48(21):36-40. ZHANG W H, LIU W Y, YE X P, et, al. Robust adaptive control for free-floating space manipulators based on neural network[J]. Journal of Mechanical Engineering, 2012, 48(21):36-40(in Chinese).
[16] 洪昭斌, 陈力, 李文望. 柔性臂杆、柔性关节空间机械臂T-S模糊轨迹跟踪及双柔振动并行综合控制[J].中国机械工程, 2016, 27(15):2020-2026. HONG S B, CHEN L, LI W W. T-S fuzzy trajectory tracking and double-flexible parallel control of flexible-link flexible-joint space manipulator[J]. China Mechanical Engineering, 2016, 27(15):2020-2026(in Chinese).
[17] NAGATOMO M, WADA K. On the results of the manipulator flight demonstration (MFD)[J]. Jasma, 1998, 15:86-92.
[18] MATUNAGA S. Micro-gravity experiments of space robotics and space-used mechanisms at Tokyo institute of technology[J]. Journal of the Japan Society of Micro-gravity Application, 2002, 19:101-105.
[19] WILL R, RHODES M, DOGGETT W R, et al. An automated assembly system for large space structures[C]//Intelligent Robotic Systems for Space Exploration, 1992, 168:39-110.
[20] 岳宝增, 祝乐梅. 携带晃动燃料柔性航天器姿态机动中的同宿环分叉研究[J]. 宇航学报, 2011, 32(5):991-997. YUE B Z, ZHU L M. Heteroclinic bifurcations in attitude maneuver of slosh-coupled spacecraft with flexible appendage[J]. Journal of astronautics, 2011, 32(5):991-997(in Chinese).
[21] 郭胜鹏, 李东旭, 范才智, 等. 受重力梯度扰动的空间机器人姿态动力学非线性特征分析[J]. 物理学报, 2014, 63(10):32-40. GUO S P, LI D X, FAN C Z, et al. Nonlinearity of the attitude motion of space rob ots sub jected to gravitational gradient torque[J]. Acta Physica Sinica, 2014, 63(10):32-40(in Chinese).
[22] 程靖, 陈力. 双臂空间机器人捕获航天器后的镇定运动分块滑模自适应神经网络控制[J]. 中国机械工程, 2017, 28(12):1427-1433. CHENG J, CHEN L. Partitioned sliding mode adaptive neural network control of calm movements of dual-arm space robot after capturing a spacecraft[J]. China Mechanical Engineering, 2017, 28(12):1427-1433(in Chinese).
[23] ASTOLFI A, ORTEGA R, VENKATRAMAN A. A globally exponentially convergent immersion and invai-ance speed observer for mechanical systems with non-holonomic constraints[J]. Automatica, 2010, 46(1):182-189.
[24] CHI J. Hybrid control of 2-DOF joint robot based on port-controlled Hamiltonian and PD algorithm[J]. Cluster Computing, 2017(3):1-7.
[25] FREITAG L, KNECHT S, ANGELIi C, et al. Multireference perturbation theory with cholesky decompositionfor the density matrix renormalization group[J]. Journal of Chemical Theory & Computation, 2016, 13(2):451.
[26] WANG Y, GE S S. Augmented Hamiltonian formulation and energy-based control design of uncertain mechanical systems[J]. IEEE Transactions on Control Systems Technology, 2008, 16(2):202-213.
[27] FAROKHI H, GHAYESH M H. Supercritical nonlinear parametric dynamics of Timoshenko microbeams[J]. Communications in Nonlinear Science & Numerical Simulation, 2018, 59:592-605.
Outlines

/