[1] KHAN Z A, AGAWAL S K. Force and moment characterization of flapping wings for micro air vehicle application[C]//American Control Conference, 2005:1515-1520.
[2] 张锐, 周超英, 汪超, 等. 蜻蜓非对称扑动时的气动特性[J]. 航空学报,2017, 38(12):106-118. ZHANG R, ZHOU C Y, WANG C, et al. Aerodynamic characteristics of dragonfly in asymmetric flapping[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(12):106-118(in Chinese).
[3] YAFENG Z, BIFENG S, YIZHE Z. Development of flapping wing micro air vehicle[C]//26th International Congress of the Aeronautical Sciences. Alaska:International Council of the Aeronautical Sciences, 2008:14-19.
[4] GERDES J W, GUPTA S K, WILKERSON S A. A review of bird-inspired flapping wing miniature air vehicle designs[C]//ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Montreal:American Society of Mechanical Engineers, 2012:57-67.
[5] 陈利丽, 宋笔锋, 宋文萍, 等. 一种基于结构动力学的柔性扑翼气动结构耦合方法研究[J]. 航空学报, 2013, 34(12):2668-2681. CHEN L L,SONG B F,SONG W P, et al. Research on aerodynamic-structural coupling of flexible flapping wings[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(12):2668-2681(in Chinese).
[6] 贺红林, 周翔. 柔性扑翼非定常涡格法气动计算的改进与实现[J]. 航空学报, 2010, 31(6):1121-1126. HE H L, ZHOU X. Improvement and implementation of unsteady vortex lattice method for aerodynamic computation of flexible flapping wing[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(6):1121-1126(in Chinese).
[7] 肖天航, 昂海松, 周新春. 柔性扑翼非定常流场的数值计算方法[J]. 航空学报, 2009, 30(6):990-999. XIAO T H, ANG H S, ZHOU X C. Numerical calculation method for unsteady flow field of flapping flapping wing[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(6):990-999(in Chinese).
[8] PORNSIN-SIRIRAK T N, TAI Y C, NASSEF H, et al. Titanium-alloy MEMS wing technology for a micro aerial vehicle application[J]. Sensors and Actuators A:Physical, 2001, 89(1):95-103.
[9] 夏宇阳. 仿生扑翼飞行器的翅型设计及其实验研究[D]. 南京:东南大学, 2004:19-20. XIA Y Y. Wing shape design and experimental study of bionic flapping wing aircraft[D]. Nanjing:Southeast University, 2004:19-20(in Chinese).
[10] ZHANG W, HU C. Solar cell as wings of different sizes for flapping-wing micro air vehicles[J]. International Journal of Micro Air Vehicles, 2016, 8(4):209-220.
[11] PEREZROSADO A, GEHLHAR R D, NOLEN S, et al. Design, fabrication, and characterization of multifunctional wings to harvest solar energy in flapping wing air vehicles[J]. Smart Materials and Structures, 2015, 24(6):065042.
[12] PEREZ-ROSADO A, BRUCK H, GUPTA S K. Integrating solar cells into flapping wing air vehicles for enhanced flight endurance[J]. Journal of Mechanisms and Robotics, 2016, 8(5):051006.
[13] JEAN J, WANG A, BULOVIC' V. In situ vapor-deposited parylene substrates for ultra-thin, lightweight organic solar cells[J]. Organic Electronics, 2016, 31:120-126.
[14] WOOD R J. The First takeoff of a biologically inspired at-scale robotic insect[J]. IEEE Transactions on Robotics, 2008, 24(2):341-347.
[15] MA K Y, WOOD R J. Controlled flight of a biologically inspired, insect-scale robot[J]. Science, 2013, 340(6132):603-607.
[16] GAISSERT N, MUGRAUER R, MUGRAUER G, et al. Inventing a micro aerial vehicle inspired by the mechanics of dragonfly flight[M]. Heidelberg:Springer, 2013:90-100.
[17] YANG L J. Practical flapping mechanisms for 20 cm-span micro air vehicles[J]. International Journal of Micro Air Vehicles, 2015, 7(2):181-202.
[18] KARÁSEK M, ROMANESCU I, PREUMONT A. Pitch moment generation and measurement in a robotic hummingbird[J]. International Journal of Micro Air Vehicles, 2013, 5(4):299-309.
[19] KEENNON M, KLINGEBIEL K, WON H. Development of the nano hummingbird:a tailless flapping wing micro air vehicle[C]//AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston, VA:American Institute of Aeronautics and Astronautics, 2013:6-12.
[20] FINIO B M, SHANG J K, WOOD R J. Body torque modulation for a microrobotic fly[C]//IEEE International Conference on Robotics and Automation, 2009:3449-3456
[21] 黄鸣阳, 肖天航, 昂海松. 多段柔性变体扑翼飞行器设计[J]. 航空动力学报, 2016, 31(8):1838-1844. HUANG M Y, XIAO T H, ANG H S. Design of an ornithopter with multisection flexible morphing wings[J]. Journal of Aerospace Power, 2016, 31(8):1838-1844(in Chinese).
[22] 昂海松. 微型飞行器的设计原则和策略[J]. 航空学报, 2016, 37(1):69-80. ANG H S. Design principles and strategies of micro air vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1):69-80(in Chinese).
[23] 段文博, 昂海松, 肖天航. 主动变形扑翼飞行器的设计和风洞测力试验研究[J]. 航空学报, 2013, 34(3):474-486. DUAN W B, ANG H S, XIAO T H. Design and wind tunnel test of active morphing wing ornithopter[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(3):474-486(in Chinese).
[24] 叶以楠, 张卫平. 基于OpenCV的微型扑翼飞行器视觉伺服系统[J]. 计算机与现代化, 2015(4):90-93. YE Y N, ZHANG W P. A visual servo system of FMAV based on openCV[J]. Computer and Modernization, 2015(4):90-93(in Chinese).
[25] 张伟, 张卫平, 柯希俊, 等. 扑翼微飞行器紫外激光加工技术[J]. 半导体光电, 2015, 36(4):657-660. ZHANG W, ZHANG W P, KE X J, et al. UV laser processing technology of flapping-wing micro air vehicles[J]. Semiconductor Optoelectronics, 2015, 36(4):657-660(in Chinese).
[26] 魏榛, 贾立超, 杨基明. 一种平行曲柄连杆扑翼机构的设计、优化与实现[J]. 力学与实践, 2011, 33(2):62-66. WEI Z, JIA L C, YANG J M. Design, optimization and implementation of a parallel crank-rocker flapping mechanism[J]. Mechanics and Practice, 2011, 33(2):62-66(in Chinese).
[27] 周凯, 方宗德, 曹雪梅, 等. 单曲柄双摇杆扑翼驱动机构的优化设计[J]. 航空动力学报, 2008, 23(1):184-188. ZHOU K, FANG Z D, CAO X M, et al. Optimization design for single-crank and double-rocker kind of driving mechanism of FMAV[J]. Journal of Aerospace Power, 2008, 23(1):184-188(in Chinese).
[28] 张亚锋, 宋笔锋, 马红萍, 等. 仿生扑翼机构的优化设计[J]. 机械设计与研究, 2008(4):23-25. ZHANG Y F, SONG B F, MA H P, et al. Optimization design of flapping-wing mechanism[J]. Mechanical Design and Research, 2008(4):23-25(in Chinese).
[29] ZHANG T, ZHOU C, ZHANG X, et al. Design, analysis, optimization and fabrication of a flapping wing MAV[C]//International Conference on Mechatronic Science, Electric Engineering and Computer, 2011:2241-2244.
[30] KHATAIT J P, MUKHERJEE S, SETH B. Compliant design for flapping mechanism:A minimum torque approach[J]. Mechanism and Machine Theory, 2006, 41(1):3-16.
[31] TANTANAWAT T, KOTA S. Design of compliant mechanisms for minimizing input power in dynamic applications[J]. Journal of Mechanical Design, 2007, 129(10):1064-1075.
[32] WU J H, SUN M. Wing kinematics in a hovering dronefly minimize power expenditure[J]. Journal of Insect Science, 2014, 14(1):159-167.
[33] MADANGOPAL R, KHAN Z A, AGRAWAL S K. Biologically inspired design of small flapping wing air vehicles using four-bar mechanisms and quasi-steady aerodynamics[J]. Journal of Mechanical Design, 2005, 127(4):867-874.
[34] KEENNONM T,GRASMEYEJ M. Development of the black widow and microbat mavs and a vision of the future of mav design[C]//AIAA International Air and Space Symposium and Exposition, 2003:14-17.
[35] PORNSIN-SIRIRAK T N, LEE S W, NASSEF H, et al. MEMS wing technology for a battery-powered ornithopter[C]//The Thirteenth International Conference on MICRO Electro Mechanical Systems, 2000:799-804.
[36] ISHⅡ A, HEIBECK M, BLAZEJEWSKI M, et al. Design and implementation of a biologically inspired swimming robot an EPS@ISEP 2014 spring project[C]//International Conference on Technological Ecosystems for Enhancing Multiculturality, 2015:219-226.
[37] DECROON G C H E, PERCIN M, REMES B D W, et al. The delfly:Design, aerodynamics, and artificial intelligence of a flapping wing robot[M]. Netherlands:Springer Publishing Company, Incorporated, 2015:13-14.
[38] DE CROON G C, GROEN M A, DE W C, et al. Design, aerodynamics and autonomy of the DelFly[J]. Bioinspiration & Biomimetics, 2012, 7(2):025003.
[39] 陈文元. 微型扑翼式仿生飞行器[M]. 上海:上海交通大学出版社, 2010:55-57. CHEN W Y. Flapping wing biomimetic aircraft[M]. Shanghai:Shanghai Jiao Tong University press, 2010:55-57(in Chinese).
[40] NAKATA T, LIU H, TANAKA Y, et al. Aerodynamics of a bio-inspired flexible flapping-wing micro air vehicle[J]. Bioinspiration & Biomimetics, 2011, 6(4):045002.
[41] BRADSHAW N, LENTINK D. Aerodynamic and Structural Dynamic Identification of a Flapping Wing Micro Air Vehicle[C]//26th AIAA Applied Aerodynamics Conference, 2008:6248.
[42] NGUYEN Q-V, CHAN WL, DEBIASI M. An insect-inspired flapping wing micro air vehicle with double wing clap-fling effects and capability of sustained hovering[C]//Proceedings of the International Society for Optical Engineering. Beijing:Society of Photo-Optical Instrumentation Engineers, 2015:94290U-94290U-94211.
[43] ELLINGTON C. The aerodynamics of hovering insect flight. Ⅲ. Kinematics[J]. Philosophical Transactions of the Royal Society of London B:Biological Sciences, 1984, 305(1122):41-78.
[44] SUN M, TANG J. Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion[J]. Journal of Experimental Biology, 2002, 205(1):55-70.
[45] SUN M, LAN S L. A computational study of the aerodynamic forces and power requirements of dragonfly (Aeschna juncea) hovering[J]. Journal of Experimental Biology, 2004, 207(11):1887-1901.
[46] MADANGOPAL R, KHAN Z A, AGRAWAL S K. Energetics-based design of small flapping-wing micro air vehicles[J]. IEEE/ASME Transactions on Mechatronics, 2006, 11(4):433-438.
[47] BAEK S S, MA K Y, FEARING R S. Efficient resonant drive of flapping-wing robots[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems, 2009:2854-2860.
[48] BAEK S S, GARCIA BERMUDEZ F L, FEARING R S. Flight control for target seeking by 13 gram ornithopter[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems, 2011:2674-2681.
[49] YANG L J, HSU C K, HO J Y, et al. Flapping wings with PVDF sensors to modify the aerodynamic forces of a micro aerial vehicle[J]. Sensors and Actuators A:Physical, 2007, 139(1):95-103.
[50] DAVID C T. Optomotor control of speed and height by free-flying Drosophila[J]. Journal of Experimental Biology, 1979, 82:389.