Material Engineering and Mechanical Manufacturing

Prediction model of machining errors based on precision and process parameters of machine tools

  • XIONG Qingchun ,
  • WANG Jiaxu ,
  • ZHOU Qinghua
Expand
  • 1. School of Aeronautics and Astronautics, Sichuan University, Chengdu 610065, China;
    2. Chengdu Aircraft Industry(Group) Co., Ltd., Chengdu 610092, China

Received date: 2017-09-01

  Revised date: 2018-05-28

  Online published: 2018-05-28

Supported by

National Science and Technology Major Project (2015ZX04001-002);Innovation Fund of AVIC (CXY2013CD36)

Abstract

To overcome the deficiency of machining accuracy evaluation system of five-axis NC milling machine in processing aircraft structural parts, an evaluation system is constructed using machine tool precision detection data, characteristics structural parts and their machining parameters. Based on the BP neural network, a prediction model for machining errors of five-axis NC milling machine is built up. The influence of each input index on the evaluation result is calculated through weight distribution of the trained network, and effectiveness of the model is verified by an example. It is shown that the results obtained by the BP neural network model are in good agreements with those by the coordinate measuring machine, demonstrating the effectiveness of those selected evaluation indexes. The prediction model can effectively evaluate the processing accuracy of the five-axis NC milling machine by combining the machine tool precision detection data, characteristics of the parts and process parameters.

Cite this article

XIONG Qingchun , WANG Jiaxu , ZHOU Qinghua . Prediction model of machining errors based on precision and process parameters of machine tools[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018 , 39(8) : 421713 -421713 . DOI: 10.7527/S1000-6893.2018.21713

References

[1] 帅朝林. 飞机结构件数字化设计与制造技术[J]. 航空制造技术, 2016(1):48-52. SHUAI C L. Digital design and manufacturing technology for aircraft structural parts[J]. Aeronautical Manufacturing Technology, 2016(1):48-52(in Chinese).
[2] 李杰, 谢福贵, 刘辛军, 等. 五轴数控机床空间定位精度改善方法研究现状[J]. 机械工程学报, 2017, 53(7):113-128. LI J, XIE F G, LIU X J, et al. Analysis on the research status of volumetric positioning accuracy improvement methods for five-axis NC machine tools[J]. Journal of Mechanical Engineering, 2017, 53(7):113-128(in Chinese).
[3] 卢碧红, 葛研军, 王启义, 等. 虚拟数控车削加工精度预测研究[J]. 机械工程学报, 2002, 38(2):82-85. LU B H, GE Y J, WANG Q Y, et al. Study on the precision prediction for virtual NC turning[J]. Journal of Mechanical Engineering, 2002, 38(2):82-85(in Chinese).
[4] 党建卫, 张卫红, 万敏,等. 周铣过程中加工误差预测新模型[J]. 机械工程学报, 2011, 47(17):150-155. DANG J W, ZHANG W H, WAN M, et al. A novel model for predicting machining error in peripheral milling process[J]. Journal of Mechanical Engineering, 2011, 47(17):150-155(in Chinese).
[5] 李逢春, 王海同, 李铁民. 重型数控机床热误差建模及预测方法的研究[J].机械工程学报, 2016, 52(11):154-160. LI F C, WANG H T, LI T M. Research on thermal error modeling and prediction of heavy CNC machine tools[J]. Journal of Mechanical Engineering, 2016, 52(11):154-160(in Chinese).
[6] 宋戈, 李剑峰, 孙杰. 基于铣削力精确建模的工件表面让刀误差预测分析[J]. 机械工程学报, 2013, 49(21):168-175. SONG G, LI J F, SUN J. Analysis on prediction of surface error based on precision milling cutting force model[J]. Journal of Mechanical Engineering, 2013, 49(21):168-175(in Chinese).
[7] 王福林, 董志贵, 吴志辉,等. 基于BP神经网络的玉米种植密度和施肥量优化[J]. 农业工程学报, 2017, 33(6):92-99. WANG F L, DONG Z G, WU Z H, et al. Optimization of maize planting density and fertilizer application rate based on BP neural network[J].Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(6):92-99(in Chinese).
[8] 徐黎明, 王清, 陈剑平, 等. 基于BP神经网络的泥石流平均流速预测[J]. 吉林大学学报(地球科学版), 2013, 43(1):186-191. XU L M, WANG Q, CHEN J P, et al. Forecast for average velocity of debris flow based on BP neural network[J].Journal of Jilin University (Earth Science Edition), 2013, 43(1):186-191(in Chinese).
[9] 邓青, 马晔风, 刘艺, 等. 基于BP神经网络的微博转发量的预测[J]. 清华大学学报(自然科学版), 2015, 55(12):1342-1347. DENG Q, MA Y F, LIU Y, et al. Prediction of retweet counts by a back propagation neural network[J]. Journal of Tsinghua University (Science and Technology), 2015, 55(12):1342-1347(in Chinese).
[10] 呙润华, 苏婷婷, 马晓伟. BP神经网络联合模板匹配的车牌识别系统[J]. 清华大学学报(自然科学版), 2013, 53(9):1221-1226. GUO R H, SU T T, MA X W. License plate recognition system using a BP neural network and template matching[J]. Journal of Tsinghua University (Science and Technology), 2013, 53(9):1221-1226(in Chinese).
[11] 姚裕盛, 徐开俊.基于BP神经网络的飞行训练品质评估[J].航空学报, 2017, 38(S1):721513. YAO Y S, XU K J. Quality assessment of flight training based on BP neural network[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(S1):721513(in Chinese).
[12] 方平, 谭义民, 吴禄, 等.人工神经网络技术在点焊质量控制中的应用研究[J]. 航空学报, 2000, 21(1):94-105. FANG P, TAN Y M, WU L, et al. Artificial neural network applied to the quality control in alternating-current resistance spot welding[J]. Acta Aeronautica et Astronautica Sinica, 2000, 21(1):94-105(in Chinese).
[13] 陈勇刚, 罗晓莉. 航空公司机队设备可靠性非线性动态评估模型[J]. 航空学报, 2013, 34(1):104-111. CHEN Y G, LUO X L. Nonlinear dynamic assessment model of airline fleet equipment reliability[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(1):104-111(in Chinese).
[14] JI T J, AN J F, HE S M, et al. Depth prediction of rain water on road surface based on artificial neural network[J]. Transaction of Nanjing University of Aeronautics & Astronautics, 2006, 23(2):115-119.
[15] 孙春华, 朱荻, 李志勇, 等. 基于BP神经网络的电解加工精度预测模型[J]. 华南理工大学学报(自然科学版), 2004, 32(10):24-27. SUN C H, ZHU D, LI Z Y, et al. Prediction of the workpiece accuracy during the electrochemical machining based on BP neural network[J]. Journal of South China University of Technology (Natural Science Edition), 2004, 32(10):24-27(in Chinese).
[16] 徐雪梅, 涂源钊, 范守文, 等. 基于BP神经网络的虚拟轴机床的实时误差补偿控制[J]. 四川大学学报(工程科学版), 2003, 35(1):81-84. XU X M, TU Y Z, FAN S W, et al. Real time error compensation control scheme for virtual axis machine tools based on BP neural network[J]. Journal of Sichuan University (Engineering Science Edition), 2003, 35(1):81-84(in Chinese).
[17] HORNIK K, STINCHCOMBE M, WHITE H. Multilayer feedforward networks are universal approximators[J]. Neural Networks, 1989, 2(5):359-366.
[18] FAUSETT L V. Fundamentals of neural networks:Architectures, algorithms, and applications[M]. Englewood Cliffs:Prentice-Hall, 1994.
[19] ZHANG Y W, QI J Y, FANG B X, et al. The indicator system based on BP neural network model for net-mediated public opinion on unexpected emergency[J]. China Communications, 2011, 8(2):42-51.
[20] 何长虹, 黄全义, 申世飞, 等. 基于BP神经网络的森林可燃物负荷量估测[J]. 清华大学学报(自然科学版), 2011, 51(2):230-233. HE C H, HUANG Q Y, SHEN S F, et al. Forest fuel loading estimates based on a back propagation neural network[J]. Journal of Tsinghua University (Science and Technology), 2011, 51(2):230-233(in Chinese).
Outlines

/