The conventional rocket is launched from the inland launch site, with the domestic impact zone. The rocket stage is possible to explode or decompose during the re-entry phase, causing significant safety issues in the impact zone. It is difficult for the conventional rocket to realize reuse in a short time. To solve the safety issue, propellant is released or burned up via engine re-ignition in the air, so as to decrease down-to-ground speed and to avoid explosion without major modifications of the rocket. In addition, grid fins are used to control the impact location of the rocket stage, reducing the impact zone range and thus improving safety.
TIAN Jichao
,
SONG Qiang
,
HONG Gang
,
ZHANG Ran
. Solutions for impact zone safety issue of conventional rockets[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018
, 39(S1)
: 722302
-722302
.
DOI: 10.7527/S1000-6893.2018.22302
[1] 环球网. 2018中国航天发射或达40次可能成为全球最多[EB/OL]. (2018-01-04)[2018-03-22].http://mil.huanqiu.com/aerospace/2018-01/11495879.html. World Wide Web. China launch will reach 40 times in 2018,which will be the most of the world[EB/OL]. (2018-01-04)[2018-03-22].http://mil.huanqiu.com/aerospace/2018-01/11495879.html (in Chinese).
[2] 李洪. 智慧火箭发展路线思考[J].宇航总体技术, 2017, 1(1):5-7. LI H. The developing roadmap of intelligent launch vehicle[J]. Astronautical Systems Engineering Technology, 2017, 1(1):5-7(in Chinese).
[3] DREYER L. Latest developments on SpaceX's Falcon 1 and Falcon 9 launch vehicles and dragon spacecraft[C]//2009 IEEE Aerospace Conference. Piscataway, NJ:IEEE Press, 2009.
[4] Complete SpaceX launch manifest[EB/OL].(2017-12-31)[2018-03-22]. https://www.reddit.com/r/SpaceX/wiki/launches/manifest.
[5] SpaceX news[EB/OL]. (2017-12-31)[2018-03-22]. https://www.nasaspaceflight.com/news/spacex/.
[6] HIMENO T, WATANABE T, NONAKA S, et al. Sloshing prediction in the propellant tanks of VTVL rocket vehicle[C]//41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, VA:AIAA, 2005.
[7] OGAWA H, NONAKA S, INATANI Y. A concept and its aerodynamic design of a sub-orbital reusable rocket[C]//34th AIAA Fluid Dynamics Conference and Exhibit. Reston, VA:AIAA, 2004.
[8] 王振国, 罗世彬, 吴建军, 等. 可重复使用运载器研究进展[M]. 长沙:国防科技大学出版社, 2004. WANG Z G, LUO S B, WU J J, et al. Recent progress on reusable launch vehicle[M]. Changsha:National University of Defense Technology Press, 2004(in Chinese).
[9] 曹志杰. 国外可重复使用运载器近期进展[J]. 国际太空, 2005(10):20-25. CAO Z J. Recent progress on reusable launch vehicle abroad[J]. Space International, 2005(10):20-25(in Chinese).
[10] 果琳丽, 刘竹生, 朱维增, 等. 未来运载火箭重复使用的途径选择及方案设想[J]. 导弹与航天运载技术, 1998(6):1-6. GUO L L, LIU Z S, ZHU W Z, et al. Method options and conceptual design of a future fully reusable rocket[J]. Missiles and Space Vehicles, 1998(6):1-6(in Chinese).
[11] 冯韶伟, 马忠辉, 吴义田, 等. 国外运载火箭可重复使用关键技术综述[J]. 导弹与航天运载技术, 2014(5):82-86. FENG S W, MA Z H, WU Y T, et al. Survey and review on key technologies of reusable launch vehicle abroad[J]. Missiles and Space Vehicles, 2014(5):82-86(in Chinese).
[12] 鲁宇. 中国运载火箭技术发展[J]. 宇航总体技术, 2017, 3(1):6-8. LU Y. Space launch vehicle's development in China[J]. Astronautical Systems Engineering Technology, 2017, 3(1):6-8(in Chinese).
[13] 徐大富, 张哲, 吴克, 等. 垂直起降重复使用运载火箭发展趋势与关键技术研究进展[J]. 科学通报, 2016, 61(32):3453-3463. XU D F, ZHANG Z, WU K, et al. Recent progress on development trend and key technologies of vertical take-off vertical landing reusable launch vehicle[J]. Chinese Science Bulletin, 2016, 61(32):3453-3463(in Chinese).
[14] 胡冬生, 郑杰, 吴胜宝. "新格伦"火箭简析及其与"猎鹰重型"火箭的对比[J]. 国际太空, 2017(6):43-48. HU D S, ZHENG J, WU S B. Analysis of New Glenn launch vehicle and its comparison with Falcon Heavy[J]. Space International, 2017(6):43-48(in Chinese).
[15] 高朝辉, 张普卓, 刘宇, 等. 垂直返回重复使用运载火箭技术分析[J]. 宇航学报, 2016, 37(2):145-152. GAO Z H, ZHANG P Z, LIU Y, et al. Analysis of vertical landing technique in reusable launch vehicle[J]. Journal of Astronautics, 2016, 37(2):145-152(in Chinese).
[16] 韩鹏鑫. 可重复使用助推器的导航、制导与控制研究[D]. 哈尔滨:哈尔滨工业大学, 2011. HAN P X. Research on the navigation guidance and control of reusable boost vehicle[D]. Harbin:Harbin Institute of Technology, 2011(in Chinese).
[17] 汤一华, 余梦伦, 杨勇, 等. 第二代可重复使用运载器及其再入制导技术[J]. 导弹与航天运载技术, 2010(1):26-31. TANG Y H, YU M L,YANG Y, et al. Second generation reusable launch vehicle and its reentry guidance technologies[J]. Missiles and Space Vehicles, 2010(1):26-31(in Chinese).
[18] 付瑜, 陈功, 卢宝刚, 等. 基于最优解析解的运载火箭大气层外自适应迭代制导方法[J]. 航空学报, 2011, 32(9):1696-1704. FU Y, CHEN G, LU B G, et al. A vacuum adaptive iterative guidance method of launch vehicle based on optimal analytical solution[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(9):1696-1704(in Chinese).
[19] 茹家欣. 液体运载火箭的一种迭代制导方法[J]. 中国科学E辑:技术科学,2009, 39(4):696-706. RU J X. An iterative guidance method for liquid launch vehicle[J]. Science in China Series E:Technological Sciences, 2009, 39(4):696-706(in Chinese).
[20] 陈新民, 余梦伦. 迭代制导在运载火箭上的应用研究[J]. 宇航学报, 2003, 24(5):484-489. CHEN X M, YU M L. Study of iterative guidance application to launch vehicles[J]. Journal of Astronautics, 2003, 24(5):484-489(in Chinese).