Electronics and Electrical Engineering and Control

An imaging algorithm for heterogeneous bistatic forward-looking SAR based on modified WLBF spectrum

  • LI Xiangping ,
  • CHEN Qi ,
  • ZHU Mingbo ,
  • ZOU Xiaohai ,
  • LU Zhiyi
Expand
  • 1. College of Coast Defence Arm, Naval Aviation University, Yantai 264001, China;
    2. College of Weapons Engineering, Naval University of Engineering, Wuhan 430033, China

Received date: 2017-11-22

  Revised date: 2018-05-28

  Online published: 2018-05-28

Supported by

State Key Laboratory Open Foundation (CEMEE2016K0201B)

Abstract

The bistatic forward-looking Synthetic Aperture Radar(SAR) composed by heterogeneous platforms has potential applicability for its flexibility in realizing forward-looking imaging for various configurations. Nevertheless, the special configuration brings new properties to echo signals, making it inconvenient to derive the spectrum model or design imaging algorithm. For this issue, a bistatic forward-looking SAR imaging algorithm is proposed based on the modified Weighted Loffeld's Bistatic Formula (WLBF) spectrum. First, the range walk removal and Chebyshev order reduction method are introduced to decrease the weighted segmentation errors and second-order Taylor expansion errors in phase history of the traditional spectrum model. On this basis, a modified WLBF spectrum model is derived. Then, the modified WLBF spectrum is expanded by Chebyshev polynomials, and thus a bistatic forward-looking SAR imaging algorithm is designed. Finally, simulations of the spectrum model and imaging algorithm are conducted. The results show that the proposed modified WLBF spectrum model has better accuracy compared with traditional ones, and the designed imaging algorithm can meet the imaging requirement for the heterogeneous bistatic system with high forward-looking angle.

Cite this article

LI Xiangping , CHEN Qi , ZHU Mingbo , ZOU Xiaohai , LU Zhiyi . An imaging algorithm for heterogeneous bistatic forward-looking SAR based on modified WLBF spectrum[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018 , 39(8) : 321886 -321886 . DOI: 10.7527/S1000-6893.2018.21886

References

[1] 胡程, 刘长江, 曾涛. 双基地前向散射雷达探测与成像[J]. 雷达学报, 2016, 5(3):229-243. HU C, LIU C J, ZENG T. Bistatic forward scattering radar detection and imaging[J]. Journal of Radars, 2016, 5(3):229-243(in Chinese).
[2] 杨建宇. 双基地合成孔径雷达技术[J]. 电子科技大学学报, 2016, 45(4):482-501. YANG J Y. Bistatic synthetic aperture radar technology[J]. Journal of University of Electronic Science and Technology of China, 2016, 45(4):482-501(in Chinese).
[3] 丁岚, 毛新华, 朱岱寅. 基于两维空变滤波的PFA波前弯曲误差补偿[J]. 航空学报, 2015, 36(2):605-613. DING L, MAO X H, ZHU D Y. Polar format algorithm wavefront curvature error compensation using 2D space-variant post-filtering[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2):605-613(in Chinese).
[4] 邵鹏, 李亚超, 李学仕, 等. 一种基于盲同态解卷积的SAR成像自聚焦算法[J]. 航空学报, 2015, 36(5):1606-1616. SHAO P, LI Y C, LI X S, et al. An image autofocus algorithm using blind homomorphic deconvolution for synthetic aperture radar[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(5):1606-1616(in Chinese).
[5] 杨鸣冬, 朱岱寅. 结合视线方向运动补偿的滑动聚束SAR子孔径成像算法[J]. 航空学报, 2016, 37(3):984-996. YANG M D, ZHU D Y. An imaging algorithm for sliding spotlight SAR using subaperture with line-of-sight motion compensation[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(3):984-996(in Chinese).
[6] 王振力, 钟海. 国外先进星载SAR卫星的发展现状及应用[J]. 国防科技, 2016, 37(1):19-24. WANG Z L, ZHONG H. The nowadays development and application of oversea advanced spaceborne SAR[J].National Defense Science & Technology, 2016, 37(1):19-24(in Chinese).
[7] 庞礴, 代大海, 邢世其, 等. 前视SAR成像技术的发展和展望[J]. 系统工程与电子技术, 2013, 35(11):2283-2290. PANG B, DAI D H, XING S Q, et al. Development and perspective of forward-looking SAR imaging technique[J]. Systems Engineering and Electronics, 2013, 35(11):2283-2290(in Chinese).
[8] DENG Y K, WANG Y. Exploration of advanced bistatic SAR experiments[J]. Journal of Radars, 2014, 3(1):1-9.
[9] 王振东, 陈溅来, 孙光才, 等. 通用的SAR系统分辨能力评估方法[J]. 系统工程与电子技术, 2017, 39(1):57-63. WANG Z D, CHEN J L, SUN G C, et al. Generalized method to analyze the resolving power of SAR systems[J]. Systems Engineering and Electronics, 2017, 39(1):57-63(in Chinese).
[10] ESPETER T, WALTERSCHEID I, KLARE J, et al. Bistatic forward-looking SAR:Results of a spaceborne-airborne experiment[J]. Geoscience and Remote Sensing Letters, IEEE, 2011, 8(4):765-768.
[11] ESPETER T, WALTERSCHEID I, KLARE J, et al. Bistatic forward-looking SAR experiments using an airborne receiver[C]//Radar Symposium (IRS), 2011 Proceedings International. Piscataway, NJ:IEEE Press, 2011:41-46.
[12] YANG J Y, HUANG Y L, YANG H G, et al. A first experiment of airborne bistatic forward-looking SAR-preliminary results[C]//Geoscience and Remote Sensing Symposium (IGARSS), 2013 IEEE International. Piscataway, NJ:IEEE Press, 2013:4202-4204.
[13] 张顺生, 宗竹林, 吴秀. 任意构型双基地SAR二维频谱精度定量评估研究[J]. 信号处理, 2013, 29(12):1725-1731. ZHANG S S, ZONG Z L, WU X. Achieving quantitative evaluation of two-dimensional spectrum precision for bistatic SAR with general configurations[J]. Journal of Signal Processing, 2013, 29(12):1725-1731(in Chinese).
[14] QIU X L, HU D H, DING C B. Focusing bistatic images use RDA based on hyperbolic approximating[C]//Chinese Institute of Electronics (CIE)' 06 International Conference on Radar. Piscataway, NJ:IEEE Press, 2006:1323-1326.
[15] 孟自强, 李亚超, 邢孟道, 等. 基于斜距等效的弹载双基前视SAR相位空变校正方法[J]. 电子与信息学报, 2016, 38(3):613-621. MENG Z Q, LI Y C, XING M D, et al. Phase space-variance method for missile-borne bistatic forward-looking SAR based on equivalent range equation[J]. Journal of Electronic & Information Technology, 2016, 38(3):613-621(in Chinese).
[16] 李燕平, 张振华, 邢孟道, 等. 星机双基地SAR的目标二维频谱计算[J]. 自然科学进展, 2007, 17(12):1699-1706. LI Y P, ZHANG Z H, XING M D, et al. Two-dimensional spectrum for space-air bistatic SAR[J]. Progress in Natural Science, 2007, 17(12):1699-1706(in Chinese).
[17] NEO Y L, WONG F, CUMMING I G. A two-dimensional spectrum for bistatic SAR processing using series reversion[J]. IEEE Geoscience and Remote Sensing Letters, 2007, 4(1):93-96.
[18] 孟自强, 李亚超, 邢孟道, 等. 弹载双基前视SAR扩展场景成像算法设计[J]. 西安电子科技大学学报(自然科学版), 2016, 43(3):31-37. MENG Z Q, LI Y C, XING M D, et al. Imaging method for the extended scene of missile-borne bistatic forward-looking SAR[J]. Journal of Xidian University, 2016, 43(3):31-37(in Chinese).
[19] LOFFELD O, NIES H, PETERS V, et al. Models and useful relations for bistatic SAR processing[C]//Geoscience and Remote Sensing Symposium, 2003. IGARSS'03. Proceedings. 2003 IEEE International. Piscataway, NJ:IEEE Press, 2003:1442-1445.
[20] 丁金闪, Otmar LOFFELD, Holger NIES, 等. 异构平台双基SAR成像的RD算法[J]. 电子学报, 2009, 37(6):1170-1174. DING J S, LOFFELD O, NIES H, et al. Focusing bistatic SAR data from heterogeneous platforms using the range Doppler algorithm[J]. Acta Electronica Sinica, 2009, 37(6):1170-1174(in Chinese).
[21] 杨然, 李坤, 邓海涛. 一种时域去走动的四阶模型SAR成像方法[J]. 空军预警学院学报, 2014(2):79-83. YANG R, LI K, DENG H T. Method of 4th-order model SAR imaging with range-migration in time domain[J]. Journal of Air Force Early Warning Academy, 2014(2):79-83(in Chinese).
[22] HU K B, ZHANG X L, SHI J. A third order range model for high speed and high maneuvering SAR using Chebyshev approximation[C]//Tencon 2013-2013 IEEE Region 10 Conference. Piscataway, NJ:IEEE Press, 2014:1-4.
[23] 邓国强, 唐敏. 误差函数Chebyshev级数的计算方法[J]. 桂林电子科技大学学报, 2016, 36(6):508-512. DENG G Q, TANG M. Chebyshev series method for the error function[J]. Journal of Guilin University of Electronic Technology, 2016, 36(6):508-512(in Chinese).
[24] 叶东, 屠园园, 孙兆伟. 面向非沿轨迹成像的切比雪夫神经网络滑模姿态控制[J]. 航空学报, 2015, 36(9):3092-3104. YE D, TU Y Y, SUN Z W. Sliding mode control for nonparallel-ground-track imaging using Chebyshev neural network[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(9):3092-3104(in Chinese).
Outlines

/