Electronics and Electrical Engineering and Control

Algorithm for fighter zigzag maneuver target tracking with correlated noises at one epoch apart

  • LU Chunguang ,
  • ZHOU Zhongliang ,
  • LIU Hongqiang ,
  • KOU Tian ,
  • YANG Yuanzhi
Expand
  • Aeronautics Engineering College, Air Force Engineering University, Xi'an 710038, China

Received date: 2018-02-01

  Revised date: 2018-05-22

  Online published: 2018-05-21

Supported by

National Natural Science Foundation of China (61472441)

Abstract

Aiming at the turn rate identification of fighter zigzag maneuver in the context of noise at the epoch apart, taking into account the characteristics of the coupling between the target state and turn rate, starting from the joint optimization solution an algorithm for joint estimation and identification with correlated noises at one epoch apart is proposed based on the Expectation Maximization (EM) algorithm. First, the de-correlating framework is utilized to eliminate the correlation between process noise and measurement noise, and thus the problem of turn rate identification with correlated noises at one epoch apart is transformed into the problem of turn rate identification with one-step delayed state. Second, by eliminating the non-linear coupling between the target state and turn rate, joint estimation and identification of both states and turn rate are achieved using the EM algorithm. A closed-loop analytic solution for the turn rate is then achieved:in the E-step, the state of the target and the expectation are achieved accurately by use of the High-degree Cubature Kalman Smoothers (HCKS) with correlated noises at one epoch apart; in the M-step, the analytical identification result of turn rate is obtained by maximizing the expectation. Simulation results show that the algorithm proposed is superior to the traditional augmentation method in terms of state estimation and turn rate identification.

Cite this article

LU Chunguang , ZHOU Zhongliang , LIU Hongqiang , KOU Tian , YANG Yuanzhi . Algorithm for fighter zigzag maneuver target tracking with correlated noises at one epoch apart[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018 , 39(8) : 322071 -322071 . DOI: 10.7527/S1000-6893.2018.22071

References

[1] 宋华, 章新华, 许林周.基于离散隐马尔科夫模型的空中目标战术机动识别[J].仪器仪表学报, 2007, 28(4):588-592. SONG H, ZHANG X H, XU L Z. Aerial combat maneuver identification based on discrete hidden Markov model[J]. Chinese Journal of Scientific Instrument, 2007, 28(4):588-592(in Chinese).
[2] 钟友武, 柳嘉润, 申功璋.自主近距空战中敌机的战术动作识别方法[J].北京航空航天大学学报,2007, 33(9):1056-1059. ZHONG Y W, LIU J R, SHEN G Z. Recognition method for tactica maneuver of target in autonomous close-in air combat[J].Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(9):1056-1059(in Chinese).
[3] ROTH M, HENDEBY G, GUSTAFSSON F. EKF/UKF maneuvering target tracking using coordinated turn models with polar/Cartesian velocity[C]//201417th International Conference on Information Fusion. Piscataway, NJ:IEEE Press, 2014:1-8.
[4] ARASARATNAM I,HAYKIN S.Cubature Kalman smoother[J]. Automatica, 2011, 47(11):2245-2250.
[5] JIA B, XIN M, CHENG Y. High-degree cubature Kalman filter[J].Automatica, 2013, 49(2):510-518.
[6] HUANG Y L, ZHANG Y G. Design of high-degree student's t-based cubature filters[J]. Circuits System Signal Process, 2017, 37(6):1-20.
[7] 黄伟平, 徐毓, 王杰. 基于改进"当前"统计模型的转弯机动跟踪算法[J].控制与决策, 2011, 26(9):1412-1416. HUANG W P, XU Y, WANG J. Algorithm based on modified current statistic mode for turn maneuver[J]. Control and Decision, 2011, 26(9):1412-1416(in Chinese).
[8] ZHU L, CHENG X. High maneuver target tracking in coordinated turns[J]. IET Radar, Sonar & Navigation, 2015, 9(8):1078-1087.
[9] EFE M, ATHERTON D P. Maneuvering target tracking using adaptive turn rate models in the interacting multiple model algorithm[C]//Proceedings of the 35th IEEE conference on Decision and Control. Piscataway, NJ:IEEE Press, 1996:3151-3156.
[10] YUAN X H, HAN C Z,DUAN Z et al. Adaptive turn rate estimation using range rate measurements[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(4):1532-1541.
[11] LIU H Q, ZHOU Z L, LU C G, et al. Maneuvering detection using multiple parallel CUSUM detector[J]. Mathematical Problems in Engineering, 2018(5):1-17.
[12] FRENCL V B, VAL J B R,MENDES R S, et al. Turn rate estimation using range rate measurements for fast manoeuvring tracking[J]. IET Radar, Sonar & Navigation, 2017, 11(7):1099-1107.
[13] BAR S, LI X R, KIRUBARAJAN T. Estimation with applications to tracking and navigation:Theory algorithms and software[M]. New Jersey:Wiley Interscience, 2001:34-50.
[14] YUAN X H, LIAN F,HAN C Z,et al. Models and algorithms for tracking target with coordinated turn motion[J]. Mathematical Problems in Engineering, 2014(2):1-10.
[15] SOUTO R F, ISHIHARA J Y. A robust extended Kalman filter for discrete time systems with uncertain dynamics, measurements and correlated noise[C]//Proceedings of 2009 American Control Conference, 2009:1888-1893
[16] ZHUO D G, HAN C Z, WEI R Z, et al. Synchronized multi-sensor tracks association and fusion[C]//Proceedings of the 4th International Conference on Information Fusion, 2001.
[17] 于浛, 宋申民, 王硕, 等. 具有随机时滞和异步相关噪声的非线性系统的高斯滤波器设计[J].中国惯性技术学报, 2015, 23(2):238-247. YU H, SONG S M,WANG S, et al. Improved gaussian filter algorithm for nonlinear system with random delay and asynchronously correlated noies[J]. Journal of Chinese Inertial Technology, 2015, 23(2):238-247(in Chinese).
[18] 冯建鑫. 含相关性噪声系统的估计和融合算法研究[D].哈尔滨:哈尔滨工业大学, 2012:9-14. FENG J X. Study on estimation and fusion algorithm for systems with correlated noises[D]. Harbin:Harbin Institute of Technology, 2012:9-14(in Chinese).
[19] 陈嘉鸿, 韩九强, 席震东, 等.一般相关噪声下多传感器平滑融合算法[J].自动化学报, 2009, 35(5):491-497. CHEN J H, HAN J Q, XI Z D, et al. Smoothing algorithm for multi-sensor fusion with general correlated noises[J]. Acta Automatica Sinica, 2009, 35(5):491-497(in Chinese).
[20] WANG X X, LIANG Y, PAN Q, et al. General equivalence between two kinds of noise-correlation filters[J]. Automatica, 2014,50(12):3316-3318.
[21] CHANG G B. Marginal unscented Kalman filter for cross-correlated process and observation noise at the same epoch[J]. IET Radar, Sonar & Navigation, 2014,8(1):54-64.
[22] HU Z T, QIN M, WANG J, et al. Unscented kalman filter based on the decoupling of correlated noise[J] Journal of Computational Information Systems, 2013, 9(7):2941-2948.
[23] WANG X X, LIANG Y, PAN Q, et al. A Gaussian approximation recursive filter for nonlinear systems with correlated noises[J]. Automatica,2012,48(9):2290-2297.
[24] HUANG Y L, ZHANG Y G, WANG X X, et al. Gaussian filter for nonlinear systems with correlated noises at the same epoch[J]. Automatica,2015,60(C):122-126.
[25] HUANG Y L, ZHANG Y G, LI N, et al. Design of gaussian approximate filter and smoother for nonlinear systems with correlated noises at one epoch apart[J]. Circuits System Signal Process, 2016, 35(11):3981-4008.
[26] SCHON T, WILLS A, NINNESS B. System identification of nonlinear state-space models[J].Automatica, 2011, 47(1):39-49.
[27] 张金凤,何重阳,梁彦.面向再入目标跟踪的估计与辨识联合优化算法[J].航空学报, 2016, 37(5):1634-1643. ZHANG J F, HE C Y, LIANG Y. Joint optimization algorithm of estimation and identification for reentry target tracking[J].Acta Aeronautica et Astronautica Sinica, 2016, 37(5):1634-1643(in Chinese).
[28] WANG X X, LIANG Y, PAN Q, et al. Measurement random latency probability identification[J].IEEE Transactions on Automatic Conrtol, 2016, 61(12):4210-4216.
[29] WANG X X, LIANG Y, PAN Q, et al. Nonlinear gaussian smoothers with colored measurements noise[J].IEEE Transactions on Automatic Conrtol, 2015, 3(60):870-876.
[30] GENZ A. Fully symmetric interpolatory rules for mutiple integrals over hyper-spherical surfaces[J].Journal of Computational and Applied Mathmaics, 2003,157(1):187-195.
[31] RADFORD N, GEOFFREY H, JORDAN M. A view of the EM algorithm that justifies incremental, sparse, and other variants[J]. Learning in Graphical Moels, 1999, 89:355-368.
[32] EMIL S, LUDMILA M, LI X R. Variableand fixed-structure augmented IMM algorithms using coordinated turn model[J]. Fusion, 2000(3):186-193.
Outlines

/