Based on a comparative analysis of the simulation methods for membrane structures, the constitutive relationship of the membrane elements considering the wrinkle problem was modified using the VUMAT subroutine to overcome the difficulty that the membrane elements cannot withstand the compressive stress. The performance of the polyimide film material was tested by Three Dimensional Digital Image Correlation (3D-DIC). The test shows that the equivalent modulus of the folded film material was about 15% lower than that of the film material without crease. Based on the difference of flex modulus of elasticity, the deployment process of Miura origami was simulated. The situations with different number of loading points are compared in terms of the two indicators of flatness and maximum stress. The results show that increase in the number of points is beneficial to flatness and maximum stress of the structure. Finally, a new film folding program is proposed based on the concept of structure forming finding and Miura origami.
ZHANG Qian
,
CAI Jianguo
,
DING Yifan
,
FENG Jian
. Design of fold-development program for film reflective surface structures[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018
, 39(S1)
: 722268
-722268
.
DOI: 10.7527/S1000-6893.2018.22268
[1] PALISOC L. Large telescope using a holographically corrected membrane mirror:LTR-00-AP-021[R]. Tustin:NIAC, 2000.
[2] 童浙夫. 静电成形薄膜反射面可展开天线研究[D]. 西安:西安电子科技大学, 2011:9-30. TONG Z F. Research on the deployable antenna of the electrostat-ically formed thin film surface[D]. Xi'an:Xidian University, 2011:9-30(in Chinese).
[3] PEARSON J, ROMANOFSKY R. Thin film antenna development and optimization[C]//47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, VA:AIAA, 2006:659-664.
[4] MIURA K, PAPA P, PELLEGRINO S. Method of packaging and deployment of large membranes in space[C]//31st Congress of the International Astronautical Federation. Tokyo:Institute of Space and Astronautautical Science, 1985:1-9.
[5] FOCATⅡS D S, GUEST S D. Deployable membranes de-signed from folding tree leaves[J]. Philosophical Transactions A Mathematical, Physical and Engineering Sciences, 2002, 360(1791):227-238.
[6] 全亮. 膜结构的褶皱分析理论与数值模拟[D]. 哈尔滨:哈尔滨工业大学, 2006:18-34. QUAN L. The wrinkling analysis theory and numerical simulations on membrane structures[D]. Harbin:Harbin Institute of Technology, 2006:18-34(in Chinese).
[7] PAPA P, PELLEGRINO S. Mechanics of systematically creased thin-film membrane structures[C]//46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference. Reston, VA:AIAA, 2005:1-12.
[8] TESSLER A. Effective modeling and nonlinear shell analysis of thin membranes exhibiting structural wrinkling[J]. Journal of Spacecraft and Rockets, 2005, 42(2):287-298.
[9] WONG Y W. Computation of wrinkle amplitudes in thin membranes[C]//43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference. Reston, VA:AIAA, 2002:1-12.
[10] 马瑞, 张建, 杨庆山. 基于薄壳单元的膜材褶皱发展过程研究[J]. 工程力学, 2011, 28(8):70-76. MA R, ZHANG J, YANG Q S. An analysis on transition of membrane wrinkles applying shell elements[J]. Engineering Mechanics, 2011, 28(8):70-76(in Chinese).
[11] 王勖成. 有限单元法[M]. 北京:清华大学出版社, 2003:378-437. WANG X C. Finite element method[M]. Beijing:Tsinghua University Press, 2003:378-437(in Chinese).
[12] CAI J G, REN Z, DING Y F, et al. Deployment simulation of foldable origami membrane structures[J]. Aerospace Science and Technology, 2017, 67:343-353.
[13] 中国国家标准化管理委员会. 塑料拉伸性能的测定第3部分:薄膜和薄片的试验条件:GB/T 1040.3-2006[S]. 北京:中国标准出版社, 2006:1-4. Standardiza Administration of The People's Republic of China. Plastics-Determination of tensile properties-Part 3:Test conditions for thin films and thin slices:GB/T 1040.3-2006[S]. Beijing:Standards Press of China, 2006:1-4(in Chinese).
[14] 刘聪, 陈振宁, 何小元. 3D-DIC在土木结构力学性能试验研究中的应用[J]. 东南大学学报(自然科学版), 2014, 44(2):339-344. LIU C, CHEN Z N, HE X Y. Application of 3D-DIC in experimental study on mechanical properties of civil structures[J]. Journal of Southeast University (Natural Science), 2014, 44(2):339-344(in Chinese).
[15] 高越. 三维数字图像相关法的关键技术及应用研究[D]. 合肥:中国科技大学, 2014:63-93. GAO Y. Research on key technologies and applications of three-dimensional digital image correlation[D]. Hefei:University of Science and Technology of China, 2014:63-93(in Chinese).
[16] 蔡祈耀, 陈务军, 张大旭, 等. Kapton薄膜折叠力学行为分析与试验[J]. 上海交通大学学报, 2014, 48(8):1009-1115. CAI Q Y, CHEN W J, ZHANG D X, et al. Mechanical behavior analysis and experiment of Kapton film folding[J]. Journal of Shanghai Jiao Tong University, 2014, 48(8):1009-1115(in Chinese).
[17] MIURA K. Method of packaging and deployment of large membranes in space[C]//Proceedings of 31st IAF Congress. Paris:IAC, 1980:1-10.
[18] MIURA K. Folded map and Atlas design based on the geometric principle[C]//Proceedings of the 20th international Cartographic Conference. Beijing:International Cartographic Association, 2001:1-8.
[19] MURPHY D M. Validation of a scalable solar sailcraft system[J]. Journal of Spacecraft & Rockets, 2012, 44(4):797-808.
[20] 王志明, 宋启根. 张力膜结构的找形分析[J]. 工程力学, 2002, 19(1):52-56. WANG Z M, SONG Q G. Form-finding analysis of tensile membrane structures[J]. Engineering Mechanics, 2002, 19(1):52-56(in Chinese).
[21] 周树路, 叶继红. 膜结构找形方法——改进力密度法[J]. 应用力学学报, 2008, 25(3):421-424. ZHOU S L, YE J H. Modified force-Density method for form-finding of membrane structures[J]. Chinese Journal of Applied Mechanics, 2008, 25(3):421-424(in Chinese).