[1] 李周复. 风洞特种试验技术[M]. 北京:航空工业出版社, 2010:1-5. LI Z F. Wind tunnel special tests technology[M]. Beijing:Aviation Industry Press, 2010:1-5(in Chinese).
[2] 张平来,马戎,常兴华,等. 虚拟飞行中气动/运动和控制耦合的数值模拟技术[J]. 力学进展, 2014, 44(10):376-415. ZHANG L P, MA R, CHANG X H, et al. Review of aerodynamics/kinematics/flight control coupling methods in virtual flight simulations[J]. Advances in Mechanics, 2014, 44(10):376-415(in Chinese).
[3] OWENS D, BRANDON J, CROOM M, et al. Overview of dynamic test techniques for flight dynamics research[C]//25th AIAA Aerodynamic Measurement Technology and Ground Testing Conference. Reston, VA:AIAA, 2006.
[4] GUO L, ZHU M, NIE B, et al. Initial virtual flight test for a dynamically similar aircraft model with control augmentation system[J]. Chinese Journal of Aeronautics, 2017, 30(2):602-610.
[5] 赵忠良, 吴军强, 李浩, 等. 高机动导弹气动/运动/控制耦合的风洞虚拟飞行试验技术[J]. 空气动力学学报, 2016, 34(1):14-19. ZHAO Z L, WU J Q, LI H, et al. Wind tunnel based virtual flight testing of aerodynamics flight dynamics and flight control for high maneuver missile[J]. Acta Aerodynamica Sinica, 2016, 34(1):14-19(in Chinese).
[6] PATTINSON J, LOWENBERG M H, GOMAN M G. Multi-degree-of-freedom wind-tunnel maneuver rig for dynamic simulation and aerodynamic model identification[J]. Journal of Aircraft, 2013, 50(2):551-566.
[7] HÜBNER A, BERGMANN A, LOESER T, et al. Experimental and numerical investigations of unsteady force and pressure distributions of moving transport aircraft configurations[C]//47th AIAA Aerospace Sciences Meeting. Reston, VA:AIAA, 2009:91.
[8] 中国航空学会. 2012-2013航空科学技术学科发展报告[R]. 北京:科学技术出版社, 2014:6-8. Chinese Society of Aeronautics and Astronautics. Reports on advances in aeronautical science and technology 2012-2013[R]. Beijing:Science and Technology Press, 2014:6-8(in Chinese).
[9] WILLIAMS R L, XIN M, BOSSCHER P. Contour-crafting-cartesian cable robot system concepts:Workspace and stiffness comparisons[C]//ASME 32nd Mechanisms and Robotics Conference. New York:ASME, 2008.
[10] DUAN B Y. A new design project of the line feed structure for large spherical radio telescope and its nonlinear dynamic analysis[J]. Mechatronics, 1999, 9(1):53-64.
[11] VONASEK V, SASKA M, PREUCIL L. Motion planning for a cable driven parallel multiple manipulator emulating a swarm of MAVs[C]//IEEE 9th Workshop on Robot Motion and Control. Piscataway, NJ:IEEE Press, 2013:13-18.
[12] REED W H, ABBOTT F T. A new "free-flight" mount system for high-speed wind-tunnel flutter models[C]//Proceedings of Symposium on Aeroelastic and Dynamic Modeling Technology, 1963:169-206.
[13] BENNETT R M, FARMER M G, MOHRT R L, et al. Wind-tunnel technique for determining stability derivatives from cable-mounted models[J]. Journal of Aircraft, 1978, 15(5):304-310.
[14] RIVERA J A, FLORANCE J R. Contributions of transonic dynamics tunnel testing to airplane flutter clearance:AIAA-2000-1768[R]. Reston, VA:AIAA, 2000.
[15] COLE S R, NOLL T E, PERRY B. Transonic dynamics tunnel aeroelastic testing in support of aircraft development[J]. Journal of Aircraft, 2003, 40(5):820-831.
[16] GRIFFIN S, CROOKS R, MOLE P. Vane support system (VSS)-A new generation wind tunnel model support system:AIAA-1991-0398[R]. Reston, VA:AIAA, 1991.
[17] LAWRENCE F C, MILLS B H. Status update of the AEDC virtual flight testing development program:AIAA-2002-0168[R]. Reston, VA:AIAA, 2002.
[18] MAGILL J C, WEHE S D. Initial test of a wire suspension mount for missile virtual flight testing:AIAA-2002-0169[R]. Reston, VA:AIAA, 2002.
[19] MAGILL J C, CATALDI P, MORENCY J R, et al. Active yaw control with a wire suspension system for dynamic wind tunnel testing:AIAA-2005-1295[R]. Reston, VA:AIAA, 2005.
[20] MAGILL J C, CATALDI P, MORENCY J R, et al. Demonstration of a wire suspension for wind-tunnel virtual flight testing[J]. Journal of Spacecraft and Rockets, 2009, 46(3):624-633.
[21] LAMBERT T J, VUKASINOVIC B, GLEZER A. A six degrees of freedom dynamic wire-driven traverse[J]. Aerospace, 2016, 3(2):1-16.
[22] LAMBERT T J. Aerodynamic control of flow dynamics coupled to a free-flight axisymmetric body[D]. Georgia:Georgia Institute of Technology, 2016:1-50.
[23] LAMBERT T J, VUKASINOVIC B, GLEZER A. Aerodynamic flow control of wake dynamics coupled to a moving bluff body[C]//8th AIAA Flow Control Conference. Reston, VA:AIAA, 2016.
[24] MICHAEL H, TIMOTHY W, MATTHEW M, et al. A review of basic research and development programs conducted in the LENS facilities in hypervelocity flows:AIAA-2012-0469[R]. Reston, VA:AIAA, 2012.
[25] Test facilities[EB/OL]. (2013-12-31)[2018-01-10]. http://tsagi.com/experimental_base/.
[26] LAFOURCADE P, LLIBRE M, REBOULET C. Design of a parallel wire-driven manipulator for wind tunnels[C]//Proceedings of the Workshop on Fundamental Issues and Future Research Directions for Parallel Mechanisms and Manipulators, 2002:187-194.
[27] LAFOURCADE P, LLIBRE M. First steps toward a sketch-based design methodology for wire-driven manipulators[C]//IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Piscataway, NJ:IEEE Press, 2003:143-148.
[28] LAFOURCADE P. Study of parallel manipulators with cables, design of an active suspension for wind tunnel[D]. Paris:ENSAE, 2004:22-29.
[29] BRUCKMANN T, HILLER M, SCHRAMM D. An active suspension system for simulation of ship maneuvers in wind tunnels[M]//New Trends in Mechanism Science. Amsterdam:Springer, 2010:537-544.
[30] STURM C, WILDAN L, BRUCKMANN T. Wire robot suspension systems for wind tunnels[M]//Wind Tunnels and Experimental Fluid Dynamics Research. London:InTech, 2011:29-50.
[31] LIN Q, ZHENG Y Q, LIU X W. Modeling and control of a wire-driven parallel support system with large attack angles in low speed wind tunnels[C]//25th Congress of the International Council of the Aeronautical Sciences, 2006:3-8.
[32] 郑亚青, 林麒, 刘雄伟, 等. 用于低速风洞飞行器气动导数试验的绳牵引并联支撑系统[J]. 航空学报, 2009, 30(8):1549-1554. ZHENG Y Q, LIN Q, LIU X W, et al. On wire-driven parallel suspension systems for static and dynamic derivatives of the aircraft in low-speed wind tunnels[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(8):1549-1554(in Chinese).
[33] 林麒, 梁斌, 郑亚青. 低速风洞绳牵引并联机器人支撑系统的模型姿态与振荡控制研究[J]. 实验流体力学, 2008, 22(3):75-79. LIN Q, LIANG B,ZHENG Y Q. Control on model attitude and oscillation by wire driven parallel manipulator support system for low speed wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2008, 22(3):75-79(in Chinese).
[34] XIAO Y W, LIN Q, ZHENG Y Q, et al. Model aerodynamic tests with a wire-driven parallel suspension system in low-speed wind tunnel[J]. Chinese Journal of Aeronautics, 2010, 23(4):393-400.
[35] 冀洋锋, 林麒, 胡正红, 等. 基于绳系并联机器人支撑系统的SDM标模动导数试验可行性研究[J]. 航空学报, 2017, 38(11):121330. JI Y F, LIN Q, HU Z H, et al. Feasibility investigation on dynamic stability derivatives test of SDM model with wire-driven parallel robot suspension system[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(11):121330(in Chinese).
[36] WANG X G, PENG M, HU Z, et al. Feasibility investigation of large-scale model suspended by cable-driven parallel robot in hypersonic wind tunnel test[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2017, 231(13):2375-2383.
[37] 胡正红, 彭苗娇, 冀洋锋, 等. 高超声速风洞WDPR支撑尖锥模型应用可行性分析[J]. 北京航空航天大学学报, 2017, 43(11):2293-2301. HU Z H, PENG M J, JI Y F, et al. Feasibility analysis of WDPR support cone model in hypersonic wind tunnel[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(11):2293-2301(in Chinese).
[38] 沈礼敏, 沈志宏, 黄勇. 低速风洞大迎角张线式支撑系统[J]. 流体力学实验与测量, 1998(4):16-22. SHEN L M, SHEN Z H, HUANG Y. A wire type-support system for high angle of attack test in low speed wind tunnel[J]. Experiments and Measurements in Fluid Mechanics, 1998(4):16-22(in Chinese).
[39] 刘大伟, 陈德华, 尹陆平, 等. 2.4米跨声速风洞条带悬挂支撑试验技术研究[J]. 空气动力学学报, 2016, 34(3):354-361. LIU D W, CHEN D H, YIN L P, et al. Investigation on the cane cable suspension support system in the 2.4m transonic wind tunnel[J]. Acta Aerodynamica Sinica, 2016, 34(3):354-361(in Chinese).
[40] LI Q, LIU D, CHEN D, et al. Numerical investigation on the support interference of vane support system in high speed wind tunnels[C]//IEEE Fifth International Conference on Intelligent Systems Design and Engineering Applications (ISDEA). Piscataway, NJ:IEEE Press, 2014:641-644.
[41] 李强, 刘大伟, 陈德华. 高速风洞中条带悬挂支撑干扰研究[J]. 实验流体力学, 2017, 31(1):100-108. LI Q, LIU D W, CHEN D H. Study on the support interference of vane suspension support system in high speed wind tunnels[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(1):100-108(in Chinese).
[42] 郭洪涛, 路波, 余立, 等.某战斗机高速全模颤振风洞试验研究[J]. 航空学报, 2012, 33(10):1765-1771. GUO H T, LU B, YU L, et al. Investigation on full-model flutter of a certain fighter plane in high-speed wind tunnel test[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(10):1765-1771(in Chinese).
[43] LV B B, LU B, YANG X H, et al. The floating suspension system in the transonic wind tunnel for full-model flutter test[M]//Advanced Materials Research. Switzerland:Trans Tech Publications, 2013:328-334.
[44] 路波, 吕彬彬, 罗建国, 等.跨声速风洞全模颤振试验技术[J]. 航空学报, 2015, 36(4):1086-1092. LU B, LYU B B, LUO J G, et al.Wind tunnel technique for transonic full-mode flutter test[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(4):1086-1092(in Chinese).
[45] 胡静, 李潜. 风洞虚拟飞行技术初步研究[J]. 实验流体力学, 2010, 24(1):95-99. HU J, LI Q.Primary investigation of the virtual flight testing techniques in wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(1):95-99(in Chinese).
[46] 王崇利, 孙牧原, 王维强, 等. FL-2风洞民机张线支撑系统研制[J]. 气动研究与实验, 2006, 23(2):41-44. WANG C L, SUN M Y, WANG W Q, et al. Research of a civil aircraft wire suspension system in FL-2 wind tunnel[J].Aerodynamic Research and Experiment, 2006, 23(2):41-44(in Chinese).
[47] 王磊, 王延奎, 邓学蓥, 等. 张线支撑系统的同步测控技术及其应用[J].飞机设计, 2013, 33(1):1-5. WANG L, WANG Y K, DENG X Y, et al.Synchronous measurement and control technology of wire suspension system and its applications[J]. Aircraft Design, 2013, 33(1):1-5(in Chinese).
[48] 于卫青, 刘高计, 李通, 等. 弹箭模型高速风洞张线支撑干扰试验方案研究[J]. 弹箭与制导学报, 2014(5):144-147. YU W Q, LIU G J, LI T, et al. Research on the missiles hanging trace interference test in high-speed wind tunnel[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2014(5):144-147(in Chinese).
[49] MING A, HIGUCHI T. Study on multiple degree of freedom positioning mechanisms using wires (Part 1):Concept, design and control[J]. International Journal of the Japan Society for Precision Engineering, 1994, 28(2):131-138.
[50] VERHOEVEN R. Analysis of the workspace of tendon-based Stewart platforms[D]. Duisburg-Essen:University of Duisburg-Essen, 2004:17-34.
[51] 刘雄伟, 郑亚青, 林麒. 应用于飞行器风洞试验的绳牵引并联机构技术综述[J]. 航空学报, 2004, 25(4):393-400. LIU X W, ZHENG Y Q, LIN Q. Overview of wire-driven parallel kinematic manipulators for aircraft wind tunnels[J]. Acta Aeronautica et Astronautica Sinica, 2004, 25(4):393-400(in Chinese).
[52] 王晓光, 马少宇, 彭苗娇, 等. 绳牵引并联机器人弹性变形对动平台位姿精度的影响[J]. 计算力学学报, 2016, 33(3):306-312. WANG X G, MA S Y, PENG M J, et al. Influence of elastic deformation on pose precision of moving platform for wire-driven parallel robot[J]. Chinese Journal of Computational Mechanics, 2016, 33(3):306-312(in Chinese).
[53] MERLET J P, ALEXANDRE J. The forward kinematics of cable-driven parallel robots with sagging cables[M]//Cable-Driven Parallel Robots. Berlin:Springer, 2015:3-15.
[54] VARZIRI M, NOTASH L. Kinematic calibration of a wire-actuated parallel robot[J]. Mechanism and Machine Theory, 2007, 42(8):960-976.
[55] MUSTAFA S K, YANG G, YEO S H, et al. Self-calibration of a biologically inspired 7 DOF cable-driven robotic arm[J]. IEEE/ASME Transactions on Mechatronics, 2008, 13(1):66-75.
[56] BORGSTROM P H, JORDAN B J, STEALEY M J, et al. Nims-pl:A cable-driven robot with self-calibration capabilities[J]. IEEE Transactions on Robotics, 2009, 25(5):1005-1015.
[57] BAYANI H, MASOULEH M T, KALHOR A. An experimental study on the vision-based control and identification of planar cable-driven parallel robots[J]. Robotics and Autonomous Systems, 2016, 75:187-202.
[58] WANG X G, HU Y B, LIN Q. Workspace analysis and verification of cable-driven parallel mechanism for wind tunnel test[J]. Proceedings of the Institution of Mechanical Engineers Part G:Journal of Aerospace Engineering, 2017, 231(6):1012-1021.
[59] STUMP E, KUMAR V. Workspaces of cable-actuated parallel manipulators[J]. ASME Journal of Mechanical Design, 2006, 128(1):159-167.
[60] MERLET J P. Wire-driven parallel robot:Open issues[M]//Romansy 19-Robot Design, Dynamics and Control. Berlin:Springer, 2013:3-10.
[61] NGUYEN D Q, GOUTTEFARDE M. On the improvement of cable collision detection algorithms[M]//Cable-Driven Parallel Robots. Berlin:Springer, 2015:29-40.
[62] BERTI A, MERLET J P, CARRICATO M. Workspace analysis of redundant cable-suspended parallel robots[M]//Cable-Driven Parallel Robots. Berlin:Springer, 2015:41-53.
[63] HAN Y, COURTEILLE E, DEBLAISE D. Static and dynamic stiffness analyses of cable-driven parallel robots with non-negligible cable mass and elasticity[J]. Mechanism and Machine Theory, 2015, 85:64-81.
[64] WANG X G, MA S Y, LIN Q, Hybrid pose/tension control based on stiffness optimization of cable-driven parallel mechanism in wind tunnel test[C]//IEEE 2nd International Conference on Control, Automation and Robotics. Piscataway, NJ:IEEE Press, 2016.
[65] NEWMAN D, KARNIADAKIS G E. Simulations of flow over a flexible cable:A comparison of forced and flow-induced vibration[J]. Journal of Fluids and Structures, 1996, 10(5):439-453.
[66] KHALAK A, WILLIAMSON C H K. Motions, forces and mode transitions in vortex-induced vibrations at low mass-damping[J]. Journal of Fluids and Structures, 1999, 13(7-8):813-851.
[67] KIM W J, PERKINS N C. Two-dimensional vortex-induced vibration of cable suspensions[J]. Journal of Fluids and Structures, 2002, 16(2):229-245.
[68] HIROSHI T. Aerodynamics of cables[C]//5th International Symposium on Cable Dynamics, 2003:11-21.
[69] POZOS E A, FLORES R, GÓMEZ R. Parametric study of stay cables of a bridge under simulated spatially correlated turbulent wind[J]. Latin American Journal of Solids and Structures, 2016, 13(8):1450-1463.
[70] 陈锋. 索结构流固耦合风振响应分析[D]. 上海:上海交通大学, 2010:54-82. CHEN F. Wind-induced vibration analysis on fluid-structure interaction for cable structures[D]. Shanghai:Shanghai Jiao Tong University, 2010:54-82(in Chinese).
[71] 彭苗娇, 王晓光, 林麒. 风洞试验WDPR支撑牵引绳与模型耦合振动研究[J]. 振动工程学报, 2017, 30(1):140-148. PENG M J, WANG X G, LIN Q. Coupled vibration between cables and aircraft model of WDPR in wind tunnel test[J]. Journal of Vibration Engineering, 2017, 30(1):140-148(in Chinese).
[72] FANG S, FRANITZA D, TORLO M, et al. Motion control of a tendon-based parallel manipulator using optimal tension distribution[J]. IEEE/ASME Transactions on Mechatronics, 2004, 9(3):561-568.
[73] CHELLAL R, CUVILLON L, LAROCHE E. A kinematic vision-based position control of a 6-DoF cable-driven parallel robot[M]//Cable-Driven Parallel Robots. Berlin:Springer, 2015:213-225.
[74] 訾斌, 段宝岩, 仇原鹰. 基于干扰观测器的Fuzzy-PID控制及应用研究[J]. 系统工程与电子技术, 2006(6):892-895. ZI B, DUAN B Y, QIU Y Y. Fuzzy-PID control based on disturbance observer and its application[J]. Systems Engineering and Electronics, 2006(6):892-895(in Chinese).
[75] LIU J, WANG X G, WANG Y Q, et al. Continuous terminal sliding mode control of a 6-DOF wire-driven parallel robot[C]//IEEE International Conference on Robot and Biomimetics. Piscataway, NJ:IEEE Press, 2017.
[76] WEN B L, SONG H Y, YANG G. Optimization of tension distribution for cable-driven manipulators using tension-level index[J]. IEEE/ASME Transactions on Mechatronics, 2014, 19(2):676-83.
[77] BORGSTROM P H, BORGSTROM N P, STEALEY M J, et al. Design and implementation of NIMS3D, a 3-D cabled robot for actuated sensing applications[J]. IEEE Transactions on Robotics, 2009, 25(2):325-339.
[78] BRUCKMANN T, POTT A, HILLER M. Calculating force distributions for redundantly actuated tendon-based stewart platforms[M]//Advances in Robot Kinematics. Berlin:Springer, 2006:403-412.
[79] BEHZADIPOUR S, KHAJEPOUR A. Design of reduced dof parallel cable-based robots[J]. Mechanism and Machine Theory, 2004, 39:1051-1065.
[80] 孙岩, 张征宇, 黄诗捷, 等. 风洞试验中模型迎角视觉测量技术研究[J]. 航空学报, 2013, 34(1):1-7. SUN Y, ZHANG Z Y, HUANG S J, et al. Vision measurement technology research for model angle og attack in wind tunnel tests[J].Acta Aeronautica et Astronautica Sinica, 2013, 34(1):1-7(in Chinese).
[81] JIA Z, MA X, LIU W, et al. Pose measurement method and experiments for high-speed rolling targets in a wind tunnel[J]. Sensors, 2014, 14(12):23933-23953.
[82] THOMAS W, CHARLES B. Design and development of a real-time model attitude measurement system for hypersonic facilities[C]//43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston, VA:AIAA, 2005.
[83] 黄叙辉, 张征宇, 尹疆. 高速风洞试验模型姿态角的视频测量及不确定度研究[J]. 实验流体力学, 2013(5):83-87. HUANG X H, ZHANG Z Y, YIN J. Videogrammetry for models attitude and its uncertainty in high-speed wind tunnel testing[J]. Journal of Experiments in Fluid Mechanics, 2013(5):83-87(in Chinese).
[84] 殷春平. 基于机器视觉的运动目标姿态测量之研究与实现[D]. 厦门:厦门大学, 2013:78-91. YIN C P.Study and realization on attitude measurement of moving objects based on machine vision[D]. Xiamen:Xiamen University, 2013:78-91(in Chinese).
[85] MACCORMICK J. Stochastic algorithms for visual tracking:Probabilistic modelling and stochastic algorithms for visual localisation and tracking[M]. New York:Springer-Verlag Inc., 2012.
[86] 赵强. 基于RGB-D相机的运动平台实时导航定位模型与方法研究[D]. 北京:中国科学院大学, 2017:1-6 ZHAO Q.Research on real time navigation and localization model and method based on RGB-D camera[D]. Beijing:University of Chinese Academy of Sciences, 2017:1-6(in Chinese).
[87] HUANG A S, BACHRACH A, HENRY P, et al. Visual odometry and mapping for autonomous flight using an RGB-D camera[M]//Robotics Research. Springer International Publishing, 2017:235-252.
[88] Free flight under tension[EB/OL]. (2006-02-14)[2018-05-01]. https://www.onera.fr/en/news/free-flight-under-tension.
[89] ABBASNEJAD G, CARRICATO M. Direct geometrico-static problem of under-constrained cable-driven parallel robots with n cables[J]. IEEE Transactions on Robotics, 2015, 31(2):468-478.
[90] CARRICATO M, MERLET J P. Stability analysis of under-constrained cable-driven parallel robots[J]. IEEE Transactions on Robotics, 2013, 29(1):288-296.
[91] BERTI A, MERLET J P, CARRICATO M. Solving the direct geometrico-static problem of under-constrained cable-driven parallel robots by interval analysis[J]. The International Journal of Robotics Research, 2016, 35(6):723-739.
[92] 桑建, 陈志平, 张巨勇, 等. 一种欠约束丝牵引并联机构工作空间的分析方法[J]. 机电工程, 2010, 27(8):52-55. SANG J, CHEN Z P, ZHANG J Y, et al. Analytic method of the workspace of an incompletely restrained wire-driven parallel mechanism[J]. Journal of Mechanical and Electrical Engineering, 2010, 27(8):52-55(in Chinese).
[93] 江晓玲, 郑亚青. 不完全约束绳牵引并联机器人的微分平坦性分析[J]. 机械设计与研究, 2010, 26(3):19-22. JIANG X L, ZHENG Y Q. Analysis of differential flatness of incompletely restrained wire-driven parallel robots[J]. Machine Design and Research, 2010, 26(3):19-22(in Chinese).
[94] BARTOLI G, CLUNI F, GUSELLA V, et al. Dynamics of cable under wind action:Wind tunnel experimental analysis[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2006, 94(5):259-273.
[95] YAMAMOTO M, YANAI N, MOHRI A. Trajectory control of incompletely restrained parallel-wire-suspended mechanism based on inverse dynamics[J]. IEEE Transactions on Robotics, 2004, 20(5):840-850.
[96] HEYDEN T, WOERNLE C. Dynamics and flatness-based control of a kinematically determined cable suspension manipulator[J]. Multibody System Dynamics, 2006, 16(2):155-177.
[97] HWANG S W, BAK J H, YOON J, et al. Trajectory generation to suppress oscillations in under-constrained cable-driven parallel robots[J]. Journal of Mechanical Science and Technology, 2016, 30(12):5689-5697.
[98] BARBAZZA L, ZANOTTO D, ROSATI G, et al. Design and optimal control of an under-actuated cable-driven micro-macro robot[J]. IEEE Robotics and Automation Letters, 2017, 2(2):896-903.
[99] ZHANG N, SHANG W W. Dynamic trajectory planning of a 3-DOF under-constrained cable-driven parallel robot[J]. Mechanism and Machine Theory, 2016, 98:21-35.
[100] NGUYEN D Q, GOUTTEFARDE M, COMPANY O, et al. On the analysis of large-dimension reconfigurable suspended cable-driven parallel robots[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ:IEEE Press, 2014:5728-5735.
[101] NGUYEN D Q, GOUTTEFARDE M. Study of reconfigurable suspended cable-driven parallel robots for airplane maintenance[C]//2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, NJ:IEEE Press, 2014:1682-1689.
[102] GAGLIARDINI L, CARO S, GOUTTEFARDE M, et al. A reconfiguration strategy for reconfigurable cable-driven parallel robots[C]//IEEE International Conference on Robotics and Automation (ICRA). Piscataway, NJ:IEEE Press, 2015:1613-1620.