Solid Mechanics and Vehicle Conceptual Design

Multi-phase material struclural topology optimization design based on feasible domain adjustment

  • YU Liaohong ,
  • RONG Jianhua ,
  • TANG Chengtie ,
  • LI Fangyi
Expand
  • 1. School of Automotive and Mechanical Engineering, Changsha University of Science and Technology, Changsha 410114, China;
    2. School of Physical Science and Technology, Yichun University, Yichun 336000, China;
    3. Hunan Province Key Laboratory of Lightweight and Reliability Technology for Engineering Vehicle, Changsha University of Science and Technology, Changsha 410114, China

Received date: 2018-01-17

  Revised date: 2018-02-09

  Online published: 2018-05-07

Supported by

National Natural Science Foundation of China (11772070,11372055); Science Foundation of Jiangxi Educational Committee (GJJ170893)

Abstract

For the multi-phase material structural compliance topology optimization problem and the existence of multiple local optimization solutions, a new solution method is proposed, and the ability of the method to get multiple local optimization solutions and to find a better optimization solution are investigated. Based on the Rational Approximation of Material Properties (RAMP) model, the feasible domain adjustment technology is introduced to construct a model for multi-phase material structural topology optimization model and its approximate model. A modified alternating active-phase algrithom is proposed, in which the multi-phase material topology optimization problem is divided into some two-phase topology optimization sub-problems, which may include two real material volume constraints. And the sub-problems are solved by the smooth dual algorithm. Compared with the existed methods, the proposed method can obtain a different local optimal topology starting from a different initial topology, and can also obtain a better local optimal multi-phase material topology by using various initial topologies. And the proposed method gives a valuable idea and a multiple design approach to solve the multi-material structural topology optimization problem.

Cite this article

YU Liaohong , RONG Jianhua , TANG Chengtie , LI Fangyi . Multi-phase material struclural topology optimization design based on feasible domain adjustment[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018 , 39(9) : 222023 -222039 . DOI: 10.7527/S1000-6893.2018.22023

References

[1] THOMSEN J. Topology optimization of structures composed of one or two materials[J]. Structural Optimization, 1992, 5(1-2):108-115.
[2] YIN L, ANANTHASURESH G K. Topology optimization of compliant mechanisms with multiple materials using a peak function material interpolation scheme[J]. Structural and Multidisciplinary Optimization, 2001, 23(1):49-62.
[3] 孙士平, 张卫红. 多相材料微结构多目标拓扑优化设计[J]. 力学学报, 2006, 38(5):633-638. SUN S P, ZHANG W H. Multiple objective topology optimal design of multiphase microstructures[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(5):633-638(in Chinese).
[4] 孙士平, 张卫红. 多相材料结构拓扑优化的周长控制方法研究[J]. 航空学报, 2006, 27(5):963-968. SUN S P,ZHANG W H. Investigation of perimeter control methods for structural topology optimization with multiphase materials[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(5):963-968(in Chinese).
[5] GAO T, ZHANG W. A mass constraint formulation for structural topology optimization with multiphase materials[J]. International Journal for Numerical Methods in Engineering, 2011, 88(8):774-796.
[6] STEGMANN J, LUND E. Discrete material optimization of general composite shell structures[J]. International Journal for Numerical Methods in Engineering, 2005, 62(14):2009-2027.
[7] HVEJSEL C F, LUND E. Material interpolation schemes for unified topology and multi-material optimization[J]. Structural & Multidisciplinary Optimization, 2011, 43(6):811-825.
[8] BLASQUES J P, STOLPE M. Multi-material topology optimization of laminated composite beam cross sections[J]. Composite Structures, 2012, 94(11):3278-3289.
[9] BLASQUES J P. Multi-material topology optimization of laminated composite beams with eigenfrequency constraints[J]. Composite Structures, 2014, 111(1):45-55.
[10] HENRICHSEN S R, LINDGAARD E, LUND E. Robust buckling optimization of laminated composite structures using discrete material optimization considering "worst" shape imperfections[J]. Thin-Walled Structures, 2015, 94(9):624-635.
[11] YAN J, DUAN Z, LUND E, et al. Concurrent multi-scale design optimization of composite frame structures using the Heaviside penalization of discrete material model[J]. Acta Mechanica Sinica, 2016, 32(3):430-441.
[12] SANDERS E D, AGUILO M A, PAULINO G H. Multi-material continuum topology optimization with arbitrary volume and mass constraints[J]. Computer Methods in Applied Mechanics and Engineering, 2018, 340:798-823.
[13] LONG K, WANG X, GU X. Local optimum in multi-material topology optimization and solution by reciprocal variables[J]. Structural & Multidisciplinary Optimization, 2018, 57(3):1-13.
[14] TAVAKOLI R, MOHSENI S M. Alternating active-phase algorithm for multi-material topology optimization problems:A 115-line MATLAB implementation[J]. Structural & Multidisciplinary Optimization, 2014, 49(4):621-642.
[15] TAVAKOLI R. Optimal design of multiphase composites under elastodynamic loading[J]. Computer Methods in Applied Mechanics & Engineering, 2016, 300:265-293.
[16] LIEU Q X,LEE J H. A multi-resolution approach for multi-material topology optimization based on isogeometric analysis[J]. Computer Methods in Applied Mechanics and Engineering, 2017, 323:272-302.
[17] PARK J, SUTRADHAR A. A multi-resolution method for 3D multi-material topology optimization[J]. Computer Methods in Applied Mechanics and Engineering, 2015, 285(2):571-586.
[18] ZUO W, SAITOU K. Multi-material topology optimization using ordered SIMP interpolation[J]. Structural and Multidisciplinary Optimization, 2017, 55(2):477-491.
[19] 杜义贤, 李涵钊, 谢黄海, 等. 基于序列插值模型和多重网格方法的多材料柔性机构拓扑优化[J]. 机械工程学报, 2018, 54(13):47-56. DU Y X, LI H Z,XIE H H, et al. Topology optimization of multiple materials compliant mechanisms based on sequence interpolation model and multigrid method[J]. Journal of Mechanical Engineering, 2018, 54(13):47-56(in Chiness).
[20] 贾娇, 龙凯, 程伟. 稳态热传导下基于多相材料的一体化设计[J]. 航空学报, 2016, 37(4):1218-1227. JIA J, LONG K, CHENG W. Concurrent topology optimization based on multiphase materials under steady thermal conduction[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(4):1218-1227(in Chinese).
[21] 张宪民, 胡凯, 王念峰, 等. 基于并行策略的多材料柔顺机构多目标拓扑优化[J]. 机械工程学报, 2016, 52(19):1-8. ZHANG X M, HU K, WANG N F, et al. Multi-objective topology optimization of multiple materials compliant mechanisms based on parallel strategy[J]. Journal of Mechanical Engineering, 2016, 52(19):1-8(in Chinese).
[22] 龙凯, 谷先广, 王选. 基于多相材料的连续体结构动态轻量化设计方法[J]. 航空学报, 2017, 38(10):134-143. LONG K, GU X G, WANG X. Method for structural light design under vibration using multiple materials[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(10):134-143(in Chinese).
[23] WANG M Y, WANG X. "Color" level sets:A multi-phase method for structural topology optimization with multiple materials[J]. Computer Methods in Applied Mechanics and Engineering, 2004, 193(6):469-496.
[24] LUO Z, TONG L Y, LUO J Z, et al. Design of piezoelectric actuators using a multiphase level set of piecewise constants[J]. Journal of Computational Physics, 2009, 228(7):2643-2659.
[25] HUANG X, XIE Y M. Bi-directional evolutionary topology optimization of continuum structures with one or multiple materials[J].Computational Mechanics, 2009, 43(3):393-401.
[26] WANG M Y, ZHOU S. Synthesis of shape and topology of multi-material structures with a phase-field method[J]. Journal of Computer-Aided Materials Design, 2004, 11(2-3):117-138.
[27] ZHOU S, WANG M Y. Multimaterial structural topology optimization with a generalized Cahn-Hilliard model of multiphase transition[J]. Structural and Multidisciplinary Optimization, 2007, 33(2):89-111.
[28] 王博, 周演, 周鸣. 面向连续体拓扑优化的多样性设计求解方法[J]. 力学学报, 2016, 48(4):984-993. WANG B, ZHOU Y, ZHOU M. Multiple designs approach for continuum topology optimization[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4):984-993(in Chinese).
[29] RONG J H, XIAO T T, YU L H, et al. Continuum structural topological optimizations with stress constraints based on an active constraint technique[J]. International Journal for Numerical Methods in Engineering, 2016, 108(4):326-360.
[30] RONG J H, YU L, RONG X P, et al. A novel displacement constrained optimization approach for black and white structural topology designs under multiple load cases[J]. Structural and Multidisciplinary Optimization, 2017, 56(4):865-884.
[31] 俞燎宏, 荣见华, 赵志军, 等. 多工况载荷下连续体结构柔顺度拓扑优化问题的新的求解方法[J]. 机械工程学报, 2018, 54(5):210-219. YU L H,RONG J H, ZHAO Z J, et al. A new solving method of the compliance topology optimization problem of continuum structures under multiple load cases[J]. Chinese Journal of Mechanical Engineering, 2018, 54(5):210-219(in Chinese).
[32] KAI A J, HANSEN J S, MARTINS J R R A. Structural topology optimization for multiple load cases using a dynamic aggregation technique[J]. Engineering Optimization, 2009, 41(12):1103-1118.
[33] SVANBERG K. The method of moving asymptotes-A new method for structural optimization[J]. International Journal for Numerical Methods in Engineering, 1987, 24(2):359-373.
[34] SVANBERG K. A class of globally convergent optimization methods based on conservative convex separable approximations[J]. Siam Journal on Optimization, 2002, 12(2):555-573.
[35] SIGMUND O A. 99 line topology optimization code written in MATLAB[J]. Structural and Multidisciplinary Optimization, 2001, 21:120-127.
[36] SIGMUND O. Design of multiphsics actuators using topology optimization-Part Ⅱ:Two-material structures[J]. Computer Methods in Applied Mechanics and Engineering, 2001, 190:6605-6627.
Outlines

/