Considering the fact that modeling a complex system such as the launch vehicle is particularly difficult, anomaly detection methods based on data driven are studied. This paper proposes a multi-strategy anomaly detection method based on statistics of probability density distribution. The unsupervised learning method is used to excavate the model for normal correlation between different parameters of the rocket engine. As the early anomaly data of the rocket engine will cause damage to the normal correlation model, the multi strategy anomaly detection and evaluation mechanism is introduced to effectively shield the influence of parameter measurement faults on fault detection of the system, so that system anomaly can be detected more accurately. We use the historical data of engine tests as the training samples to train the characteristic models, and experimental verification of anomaly detection of engine test data in real time is carried out by using the one-element model, the multi-element model and the model based on hybrid probability density distribution. The result shows that compared with the traditional thresh and norm based anomaly detection methods, the multi-strategy anomaly detection method can give not only the normal ad anomaly states of the system, but also the anomaly scores of each parameter and the whole system, thus providing a more flexible reference for further fault diagnosis of launch vehicles.
LI Lei
,
XIE Li
,
ZHANG Yongjie
,
WU Qin
. Application of data mining in intelligence test of launch vehicles[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018
, 39(S1)
: 722203
-722203
.
DOI: 10.7527/S1000-6893.2018.22203
[1] 李洪. 智慧火箭发展路线思考[J]. 宇航总体技术, 2017, 1(1):1-7. LI H. Thinking on the development route of intelligent rocket[J]. Astronautical Systems Engineering Technology, 2017, 1(1):1-7(in Chinese).
[2] 宋征宇. 运载火箭远程故障诊断技术综述[J]. 宇航学报, 2016, 37(2):135-144. SONG Z Y. A review of remote fault diagnosis technology for launch vehicle[J]. Journal of Astronautics, 2016, 37(2):135-144(in Chinese).
[3] 刘成瑞, 张庆振, 任章. 基于扩展故障树的运载火箭故障诊断专家系统[J]. 宇航学报, 2008, 29(6):1936-1941. LIU C R, ZHANG Q Z, REN Z. Fault diagnosis expert system for launch vehicle based on extended fault tree[J]. Journal of Astronautics, 2008, 29(6):1936-1941(in Chinese).
[4] 张素明, 安雪岩, 颜廷贵, 等. 大型运载火箭的健康管理技术应用分析与探讨[J]. 导弹与航天运载技术, 2013(6):33-38. ZHANG S M, AN X Y, YAN T G, et al. Application and analysis of health management technology for large launch vehicles[J]. Missiles and Space Vehicles, 2013(6):33-38(in Chinese).
[5] 周东华, 刘洋, 何潇. 闭环系统故障诊断技术综述[J]. 自动化学报, 2013, 39(11):1933-1943. ZHOU D H, LIU Y, HE X, A review of fault diagnosis technology in closed loop system[J]. Acta Automatica Sinica, 2013, 39(11):1933-1943(in Chinese).
[6] 李璨, 赵小卓, 耿辉, 等. 一种用于运载火箭测试发射过程的多策略故障诊断系统:中国, CN105486526A[P]. 2016-04-13. LI C, ZHAO X Z, DI H, et al. A multi strategy fault diagnosis system for launch vehicle test and launch process:China, CN105486526A[P]. 2016-04-13(in Chinese).
[7] SCHWABACHER M, WATERMAN R. Pre-launch diagnostics for launch vehicles[C]//IEEE Aerospace Conference Proceedings. Piscataway, NJ:IEEE Press, 2008:1-8.
[8] MARTIN R A. Aerospace technologies advancements:Evaluation of anomaly detection capability for ground-based pre-launch shuttle operations. aerospace technologies advancements[M]. Croatia:InTech, 2010:141-164.
[9] FERRELL B, BROWN B, HALL D, et al. Usage of fault detection isolation & recovery (FDIR) in constellation (CxP) launch operations[C]//SpaceOps 2010 Conference. Reston, VA:AIAA, 2010:1-9.
[10] SCHWABACHER M, MARTIN R, WATERMAN R, et al. Ares I-X ground diagnostic prototype[C]//AIAA Infotech@Aerospace Conference 2010. Reston, VA:AIAA, 2010:1-11.
[11] 陈斌, 陈松灿, 潘志松, 等. 异常检测综述[J]. 山东大学学报(工学版), 2009(6):13-23. CHEN B, CHEN S C, PAN Z S, et al. A review of anomaly detection[J]. Journal of Shandong University (Engineering Edition), 2009(6):13-23(in Chinese).
[12] SAIN S R, GRAY H L, WOODWRD W A, et al. Outlier detection from a mixture distribution when training data are unlabeled[J]. Bulletin of the Seismological Society of America, 1999, 89(1):294-304.
[13] LEE H, CHO S. Application of LVQ to novelty detection using outlier training data[J]. Pattem Recognition Letters, 2006, 27(13):1572-1579.
[14] SCHOLKOPF B, PLATT J, SHAWE-TAYLOR J, et al. Estimating the support of high-dimensional distribution[J]. Neural Computation, 2001, 13(7):1443-1471.
[15] DEVENDRA T, MURAT Y, ASOK R, et al. Anomaly detection in aircraft gas turbine engines[J]. Journal of Aerospace Computing Information & Communication, 2015, 3(2):44-51.
[16] SPIROS P, MICHAIL V. Computing correlation anomaly scores using stochastic nearest neighbors[C]//Seventh IEEE International Conference on Data Mining. Piscataway, NJ:IEEE Computer Society, 2007:523-528.
[17] TSUYOSHI I, ANKUSH K, JAYANT K. Sparse gaussian markov random field mixtures for anomaly detection[C]//2016 IEEE 16th International Conference on Data Mining. Piscataway, NJ:IEEE Press, 2017:955-960.
[18] 陈雪巍, 汪轶俊, 何岗, 等. 基于CFD的某运载火箭发动机燃料泵故障诊断分析[J]. 上海航天, 2016, 33(2):68-72. CHEN X W, WANG Y J, HE G, et al. Fault diagnosis analysis of a launch vehicle engine fuel pump based on CFD[J]. Aerospace Shanghai, 2016, 33(2):68-72(in Chinese).
[19] 黄强. 高压补燃液氧煤油发动机故障检测与诊断技术研究[D]. 长沙:国防科技大学, 2012:70-84. HUANG Q. Research on fault detection and diagnosis technology of high pressure afterburning liquid oxygen kerosene engine[D]. Changsha:National Defense University of Science and Technology, 2012:70-84(in Chinese).
[20] 李京浩. 基于数据挖掘技术的液体火箭发动机故障检测和诊断研究[D]. 长沙:国防科技大学, 2007:11-34. LI J H. Research on fault detection and diagnosis of liquid rocket engine based on data mining technology[D]. Changsha:National Defense University of science and technology, 2007:11-34(in Chinese).
[21] 李艳军. 新一代大推力液体火箭发动机故障检测与诊断关键技术研究[D]. 长沙:国防科技大学, 2014:40-63. LI Y J. Key technologies for fault detection and diagnosis of new generation large thrust liquid rocket engine[D]. Changsha:National Defense University of Science and Technology, 2014:40-63(in Chinese).