Fluid Mechanics and Flight Mechanics

Scheme selection for heating fatigue test-bed design of canopy based on CFD

  • WANG Xin ,
  • WANG Gang ,
  • ZHANG Xuefei ,
  • HE Qianqiang
Expand
  • Shenyang Aircraft Design & Research Institute, Shenyang 110035, China

Received date: 2017-11-13

  Revised date: 2018-04-23

  Online published: 2018-04-23

Abstract

Uniform distribution of temperature on the outer surface of a large area canopy in heating fatigue tests, in particular for long time and high temperature conversion frequency tests is the key to reliability of the tests, and is also a technical problem for the design of fatigue test-beds. In this paper, we study how parameters of the design of the canopy heating fatigue test-bed influence the uniformity of the temperature field, as defined by the coupled heading temperature difference and spanwise temperature difference. A three-dimensional unsteady convection-conduction model is developed to study the scheme for selection of the design parameters of the test section and the front transition section of the annular channel through Computational Fluid Dynamics (CFD) based simulations. Effects of the factors, such as variation period of inlet temperature, characteristic dimension of the test section, inlet flow rate, and characteristic angle of the front transition section, on temperature field uniformity are discussed. It is found that change of the control period of inlet temperature has little effect on temperature distribution over the outer surface of the canopy, and adjustment of the characteristic dimension of the test section can significantly change the temperature difference in the heading and spanwise directions. In addition, increasing the inlet flow rate can effectively improve the uniformity of temperature field on the outer surface of the canopy. By changing the characteristic angle of the front transition section, the temperature difference caused by the windshield temperature can be significantly improved. The results presented in this study can provide theoretical support for scheme selection for heating fatigue test-bed design of the canopy.

Cite this article

WANG Xin , WANG Gang , ZHANG Xuefei , HE Qianqiang . Scheme selection for heating fatigue test-bed design of canopy based on CFD[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018 , 39(8) : 121863 -121863 . DOI: 10.7527/S1000-6893.2018.21863

References

[1] 黄宝臣, 杨旭. 风挡和座舱盖透明件边缘连接设计[J]. 飞机设计, 2014, 34(4):37-41. HUANG B C, YANG X. Design of the edge joints for wind shield and canopy transparency[J]. Aircraft Design, 2014, 34(4):37-41(in Chinese).
[2] 冷国新. 飞机风挡材料的选用[J]. 玻璃, 2001, 29(4):45-46. LENG G X. Preferring material of airplane's windsh-ield[J]. Glass, 2001, 29(4):45-46(in Chinese).
[3] 顾诵芬. 飞机总体设计[M]. 北京:北京航空航天大学出版社, 2001:76-80. GU S F. Aircraft conceptual design[M]. Beijing:Beijing University of Aeronautics & Astronautics Press, 2001:76-80(in Chinese).
[4] 张萃, 张建宇, 王佳莹, 等. 某型飞机新旧座舱盖有机玻璃的疲劳性能研究[J]. 飞机设计, 2009, 29(6):28-31. ZHANG C, ZHANG J Y, WANG J Y, et al. A study of fatigue properties of newly-formed and served canopy pmma in certain airplane[J]. Aircraft Design, 2009, 29(6):28-31(in Chinese).
[5] 刘伟, 高宗战, 岳珠峰. MDYB-3有机玻璃疲劳性能温度效应研究[J]. 航空学报, 2007, 28(4):874-876. LIU W, GAO Z Z, YUE Z F. The fatigue performance of MDYB-3 PMMA under different temperature[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(4):874-876(in Chinese).
[6] 刘海燕, 李喜明, 王红斌. 航空有机玻璃加速老化试验技术研究[J]. 装备环境工程, 2011, 8(6):83-87. LIU H Y, LI X M, WANG H B. Research on accelerated weathering test technique of perspex[J]. Equipment Environmental Engineering, 2011, 8(6):83-87(in Chinese).
[7] 陈小刚, 魏兵, 惠战荣.定向有机玻璃裂纹扩展性能试验研究[J]. 机械强度, 2016, 38(4):734-737. CHEN X G, WEI B, HUI Z R. Experimental study of fatigue crack growth for PMMA[J]. Journal of Mechanical Strength, 2016, 38(4):734-737(in Chinese).
[8] 宋全超, 张建国, 乙晓伟, 等. 有机玻璃裂纹扩展双参量驱动力模型[J]. 航空材料学报, 2011, 31(4):86-89. SONG Q C, ZHANG J G, YI X W, et al. Model of two-parameter driving force for fatigue crack growth of PMMA[J]. Journal of Aeronautical Materials, 2011, 31(4):86-89(in Chinese).
[9] 高宗战, 刘伟, 岳珠峰, 等. 有机玻璃疲劳裂纹扩展[J]. 材料科学与工程学报, 2008, 26(1):90-93. GAO Z Z, LIU W, YUE Z F, et al. Fatigue crack propagation in polyethylene methacrylate[J]. Journal o f Materials Science & Engineering, 2008, 26(1):90-93(in Chinese).
[10] 瑚洋, 韩王超, 常红亮. 基于CFD技术的飞机风挡加温系统热载荷计算[J]. 航空科学技术, 2016, 27(4):21-25. HU Y, HAN W C, CHANG H L. Design of aircraft windshield heating system based on CFD technology[J]. Aeronautical Science & Technology, 2016, 27(4):21-25(in Chinese).
[11] 林丽, 马庆林, 常红亮. 某型机风挡加温系统控制规律的数值模拟[J]. 航空工程进展, 2014, 5(4):509-514. LIN L, MA Q L, CHANG H L. Numerical simulation of control law of an aircraft windshield heating system[J]. Advances in Aeronautical Science and Engineering, 2014, 5(4):509-514(in Chinese).
[12] 瑚洋, 党琦, 常红亮. 某型飞机风挡加温系统地面试验研究[J]. 航空科学技术, 2014, 25(3):67-70. HU Y, DANG Q, CHANG H L. Research on ground test of aircraft windshield heating system[J]. Aeronautical Science & Technology, 2014, 25(3):67-70(in Chinese).
[13] 邸祥发, 袁贵民. 飞机座舱盖透明件加温-加载谱的制定[J]. 飞机设计, 1997(4):20-24. DI X F, YUAN G M. The establish of heating-loading spectrum for transparency of airplane canopy[J]. Aircraft Design, 1997(4):20-24(in Chinese).
[14] 刘珊. 座舱盖高低温疲劳试验台换热数值模拟及热经济分析[D]. 西安:西北工业大学, 2001:1-4. LIU S. Numerical simulation and thermoeconomic analysis of the test-bed for high-low temperature fatigue of canopy[D]. Xi'an:Northwestern Polytechnical University, 2001:1-4(in Chinese).
[15] 刘振侠, 王淼, 吴丁毅, 等. 飞机座舱盖热疲劳试验台设计研究[J]. 航空学报, 2006, 27(3):386-389. LIU Z X, WANG M, WU D Y, et al. Study of the design for canopy thermal fatigue test-bed[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(3):386-389(in Chinese).
[16] 李世武, 刘珊. 飞机座舱盖热疲劳试验系统的热经济分析[J]. 航空学报, 2002, 23(6):517-519. LI S W, LIU S. Thermoeconomic analysis of the testing system for the thermal fatigue of aircraft canopy[J]. Acta Aeronautica et Astronautica Sinica, 2002, 23(6):517-519(in Chinese).
[17] 李世武. 管网系统热经济决策理论与方法的研究[D]. 西安:西北工业大学, 2002:92-99. LI S W. Research on the theory and methodology of thermoeconomic decision for piping systems[D]. Xi'an:Northwestern Polytechnical University, 2002:92-99(in Chinese).
[18] 徐长君, 刘道庆, 周宝权. 座舱盖疲劳试验温度控制技术研究[J]. 飞机设计, 2010, 30(1):51-54. XU C J, LIU D Q, ZHOU B Q. Research of temperature control technology in cabin fatigue test[J]. Aircraft Design, 2010, 30(1):51-54(in Chinese).
[19] 任玉新, 陈海昕. 计算流体力学基础[M]. 北京:清华大学出版社, 2006:80-84. REN Y X, CHEN H X. Foundation of computational fluid dynamics[M]. Beijing:Tsinghua University Press, 2006:80-84(in Chinese).
[20] 丛成华, 刘琴, 张志峰, 等.专用跨声速风洞开孔壁试验段设计数值模拟[J]. 航空学报, 2012, 33(6):1014-1019. CONG C H, LIU Q, ZHANG Z F, et al. Numerical simulation of design of transonic wind tunnel perforated test section[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(6):1014-1019(in Chinese).
[21] 奚鹰, 高立强, 王国华, 等. 基于CFD空气动力制动风载荷试验台仿真设计[J]. 机械设计, 2015, 32(9):12-18. XI Y, GAO L Q, WANG G H, et al. Simulation design on the aerodynamic wind load test bed based on CFD[J]. Journal of Machine Design, 2015, 32(9):12-18(in Chinese).
[22] 陈作钢, 李金成, 代燚, 等.多功能风洞及CFD优化设计[J]. 实验流体力学, 2012, 26(4):73-78. CHEN Z G, LI J C, DAI Y, et al. Versatile wind tunnel and CFD-based optimal design[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(4):73-78(in Chinese).
[23] 张娜. 同心环形通道内强制对流换热的实验研究[D].东营:中国石油大学(华东), 2010:1-3. ZHANG N. Experimental study on forced convection heat transfer in concentric annular channels[D]. Dongying:China University of Petroleum (East China), 2010:1-3(in Chinese).
[24] 邸祥发, 梁瑞胜, 于金苓, 等. 飞机座舱盖载荷谱编制应注意的几个问题[J]. 飞机设计, 2010, 30(6):27-29. DI X F, LIANG R S, YU J L, et al. Some problems of compiling canopy loading spectrum[J]. Aircraft Design, 2010, 30(6):27-29(in Chinese).
[25] 陶文铨. 数值传热学[M]. 西安:西安交通大学出版社, 2011:330-350. TAO W Q. Numerical heat transfer[M]. Xi'an:Xi'an Jiaotong University Press, 2011:330-350(in Chinese).
[26] 陶文铨. 传热学[M]. 北京:高等教育出版社, 2006:211-249. TAO W Q. Heat transfer[M]. Beijing:Higher Education Press, 2006:211-249(in Chinese).
[27] YANG J W, LIAO N. An experimental study of turbulent heat transfer in converging rectangular ducts[J]. Journal of Heat Transfer, 1973, 95(4):453-457.
[28] 封建湖, 车刚明, 聂玉峰. 数值分析原理[M]. 北京:科学出版社, 2006:81-87. FENG J H, CHE G M, NIE Y F. Numerical analysis principle[M]. Beijing:Science Press, 2006:81-87(in Chinese).
Outlines

/