Fluid Mechanics and Flight Mechanics

Influence of self-strengthening effect of porous plate icing on water sublimators' performance

  • LIU Chang ,
  • NING Xianwen ,
  • MIAO Jianyin ,
  • WANG Yuying ,
  • LYU Wei ,
  • WANG Lu
Expand
  • Beijing Key Laboratory of Space Thermal Control Technology, Beijing Institute of Spacecraft System Engineering(ISSE), Beijing 100094, China

Received date: 2018-01-25

  Revised date: 2018-02-19

  Online published: 2018-04-11

Supported by

National Science and Technology Major Project; National Natural Science Foundation of China (11472040)

Abstract

The water sublimator is a heat rejection device widely used in the spacecraft thermal control system, which uses water as the consumptive medium by taking advantage of the sublimation phase change of water. During the startup and operation processes of the water sublimator, frost expansion in the porous plate will reshape the microscopic structure of the plate. Due to the effect of strain hardening, the plasticity of the porous plate will decrease and the structural parameters will be fixed after the water sublimator operates for many times, which is defined here as self-strengthening of the porous plate. As a consequence, the macroscopic performances of the water sublimator, e.g. steady-state heat rejection and ability of anti-breakthrough will be affected. In this paper, experimental research on self-strengthening effect of the porous plate on the water sublimator is carried out. The results show that for the specific water sublimator structure involved in this paper, the steady-state heat rejection decreases with the increase of the times of startup under the same condition, and the decrease rate slows down gradually. The steady-state heat rejection of the water sublimator is stabilized after 3-4 times of startup. A fitting formula that describes the relationship between steady-state heat rejection and times of startup is provided. The effect of self-strengthening behaves more notably as the permeability of the porous plate increases, and the effect can improve the anti-breakthrough ability of the plate. This research can offer some references for the design of the third mission of the moon exploration of China.

Cite this article

LIU Chang , NING Xianwen , MIAO Jianyin , WANG Yuying , LYU Wei , WANG Lu . Influence of self-strengthening effect of porous plate icing on water sublimators' performance[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018 , 39(9) : 122046 -122053 . DOI: 10.7527/S1000-6893.2018.22046

References

[1] 王玉莹, 钟奇, 宁献文, 等. 水升华器空间应用研究[J]. 航天器工程, 2013, 22(3):105-112. WANG Y Y, ZHONG Q, NING X W, et al. Overview of space application and development of water sublimator[J]. Spacecraft Engineering, 2013, 22(3):105-112(in Chinese).
[2] 丰茂龙, 黄家荣, 范含林, 等. 美国舱外航天服热控技术研究进展[J]. 载人航天, 2011, 16(3):36-41. FENG M L, HUANG J R, FAN H L, et al. Development of thermal control technology of extravehicular spacesuit of the U.S.[J]. Manned Spaceflight, 2011, 16(3):36-41(in Chinese).
[3] GRAUMANN D W. Research study on instrument unit thermal conditioning heat sink concepts annual report:NAS8-11291[R]. Washington, D.C.:NASA, 1968.
[4] TONGUE S, DINGELL C W. The porous plate sublimator as the X-38/CRV (Crew Return Vehicle) orbital heat sink[C]//27th International Conference on Environmental Systems, 1997:1-5.
[5] LEWIS J F, BARIDO R A. Crew exploration vehicle environmental control and life support development status:AIAA-2010-6154[R]. Reston, VA:AIAA, 2010.
[6] SKOOG A I, ABRAMOV I P, STOKLITSKY A Y, et al. The Soviet-Russian space suits a historical overview of the 1960's[J]. Acta Astronautic, 2002, 51(1-9):113-131.
[7] METTS J G, KLAUS D M. Equivalent system mass analysis for space suit thermal control:AIAA-2011-5180[R]. Reston, VA:AIAA, 2011.
[8] Hamilton Standard, Windsor Locks, Conn. Phase 1 engineering and technical data report for the thermal control extravehicular life support system:N75-24360[R]. 1975.
[9] CHAPMAN A J. A fundamental study of sublimation through a porous surface:NASA 9-7969[R]. Washington, D.C.:NASA, 1971.
[10] LEIMKUEHLER T O, ANDERSON M S,WESTHEIMER D T. Development of a contaminant insensitive sublimator[C]//36th International Conference on Environmental Systems, 2006.
[11] SHETH R B, STEPHAN R A, LEIMKUEHLER T O. Testing and model correlation of sublimator driven coldplate coupons and EDU[C]//39th International Conference on Environmental Systems, 2009.
[12] 吴志强, 袁修干, 沈力平. 水升华器散热系统分析[J]. 航空学报, 1999, 20(Suppl.):17-19. WU Z Q, YUAN X G, SHEN L P. Analysis of water sublimator heat rejection systems[J]. Acta Aeronautica et Astronautica Sinica, 1999, 20(Suppl.):17-19(in Chinese).
[13] 吴志强, 袁修干, 韩力军, 等. 多孔板水升华器试验研究[J]. 中国空间科学技术, 2000, 20(2):54-60. WU Z Q, YUAN X G, HAN L J, et al. An experimental investigation on porous plate water sublimator[J]. Chinese Space Science and Technology, 2000, 20(2):54-60(in Chinese).
[14] 吴志强, 袁修干. 多孔板水升华器在恒热流条件下的试验研究[J]. 北京航空航天大学学报, 2000, 26(5):552-555. WU Z Q, YUAN X G. Experimental investigation on porous plate water sublimator under constant heat flux[J]. Journal of Beijing University of Aeronautics and Astronautics, 2000, 26(5):552-555(in Chinese).
[15] 吴志强, 沈力平. 憎水涂层多孔板对水升华器散热性能影响的实验研究[J]. 航天医学与医学工程, 2003, 16(4):287-291. WU Z Q, SHEN L P. Experimental research on the effects of hydrophobic coating porous plates on heat dissipation of water sublimator[J]. Space Medicine & Medical Engineering, 2003, 16(4):287-291(in Chinese).
[16] WANG Y Y, ZHONG Q, NING X W, et al. Transient study about the heat transfer of sublimator combined with fluid loop[C]//64th International Astronautical Congress, 2013.
[17] 王玉莹, 钟奇, 宁献文, 等. 具有恒热流边界的水升华器启动特性实验[J]. 航空学报, 2014, 35(6):1571-1580. WANG Y Y, ZHONG Q, NING X W, et al. Experiment on startup performance of sublimator with constant heat flux boundary[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(6):1571-1580(in Chinese).
[18] WANG Y Y, ZHONG Q, LI J D, et al. Numerical and experimental study on the heat and mass transfer of porous plate water sublimator with constant heat flux boundary condition[J]. Applied Thermal Engineering, 2014, 67:469-479.
[19] 刘畅, 苗建印, 何江, 等. 结构参数对水升华器散热性能影响的研究[J]. 航天器工程, 2016, 25(3):57-62. LIU C, MIAO J Y, HE J, et al. Research on effects of structure parameters on heat dissipation of water sublimator[J]. Spacecraft Engineering, 2016, 25(3):57-62(in Chinese).
[20] 王建永, 汤慧萍, 朱纪磊, 等. 孔隙度对烧结不锈钢纤维多孔材料压缩性能的影响[J]. 粉末冶金技术, 2009,27(5):323-326. WANG J Y, TANG H P, ZHU J L, et al. Effect of porosity on compressive properties of porous sintered stainless steel fiber media[J]. Powder Metallurgy Technology, 2009, 27(5):323-326(in Chinese).
[21] 许飞, 焦磊, 张娟. 烧结316L不锈钢粉末多孔材料拉伸性能的研究[J]. 西安文理学院学报:自然科学版, 2012, 15(3):61-65. XU F, JIAO L, ZHANG J. A study on tensile properties of sintered 316L stainless steel powder porous materials[J]. Journal of Xi'an University of Arts & Science:Natural Science Edition, 2012, 15(3):61-65(in Chinese).
[22] 许飞, 焦磊, 张娟. 烧结316L不锈钢粉末多孔材料压缩性能的研究[J]. 西安文理学院学报:自然科学版, 2015, 18(2):83-87. XU F, JIAO L, ZHANG J. Research on compression properties of sintered 316L stainless steel powders porous materials[J]. Journal of Xi'an University of Arts & Science:Natural Science Edition, 2015, 18(2):83-87(in Chinese).
[23] 白莉, 王有镗, 高青, 等. 地下换热管土结构冻胀变形模拟[J]. 农业工程学报, 2016, 32(18):118-124. BAI L, WANG Y T, GAO Q, et al. Simulation on underground pipe-soil heat exchange structure deformation due to frost heave[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(18):118-124(in Chinese).
[24] 康永水, 刘泉声, 赵军, 等. 岩石冻胀变形特征及寒区隧道冻胀变形模拟[J]. 岩石力学与工程学报, 2012, 31(12):2518-2526. KANG Y S, LIU Q S, ZHAO J, et al. Research on frost deformation characteristics of rock and simulation of tunnel frost deformation in cold region[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(12):2518-2526(in Chinese).
Outlines

/