Solid Mechanics and Vehicle Conceptual Design

Dynamic recognition method for reliability of general aviation fleet equipment

  • CHEN Yonggang ,
  • XIONG Shenghua ,
  • HE Qiang ,
  • HE Yuanhua
Expand
  • College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan 618307, China

Received date: 2017-08-29

  Revised date: 2017-10-27

  Online published: 2018-04-10

Supported by

National Natural Science Foundation of China (U1633203); CAAC Scientific Research Base on Aviation Flight Technology and Safety (F2015KF01); Civil Aviation Flight University of China Scientific Research Foundation (J2014-32)

Abstract

Reliability of general aviation fleet equipment is a precondition for safe operation of the airline company, and is one of the important factors that affect the economic benefits of the company. According to the statistics, analysis and actual usage of reliability data of general aviation fleet equipment, the index system is constructed according to the ATA100 chapter name. Based on the advantages of the variable fuzzy recognition method and the weight ladder naive Bayesian classifier model, a dynamic recognition model for reliability of general aviation fleet equipment is constructed. To avoid the irrationality caused by the subjective given index weight, the entropy weight method is used to obtain the index weight objectively. An example is used to verify the rationality of the weight ladder naive Bayesian classifier model, and reliability recognition of the identified sample is carried out based on the proposed method. Analysis of the example shows that the weight ladder Bayesian classifier reliability recognition model for general aviation fleet equipment is feasible and reasonable, providing a scientific method for reliability recognition of general aviation fleet equipment.

Cite this article

CHEN Yonggang , XIONG Shenghua , HE Qiang , HE Yuanhua . Dynamic recognition method for reliability of general aviation fleet equipment[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018 , 39(3) : 221706 -221706 . DOI: 10.752/S1000-6893.2017.21706

References

[1] 王一姮. 通用航空公司安全运行保障能力模型研究[D]. 天津:中国民航大学, 2014:1-2. WANG Y H. Research on model of safe operation assurance capability of general aviation airline[D]. Tianjin:Civil Aviation University of China, 2014:1-2(in Chinese).
[2] 赵琪. 基于灰色预测和OLS的我国通用航空需求预测[J]. 滨州学院学报, 2013, 29(6):53-57. ZHAO Q. The forecasting of china's general aviation demand based on grey prediction model and OLS method[J]. Journal of Binzhou University, 2013, 29(6):53-57(in Chinese).
[3] 金肇鹏. 某机型机队可靠性及单机健康状况监控研究[D]. 广汉:中国民用航空飞行学院, 2011:4-6. JIN Z P. A fleet aircraft reliability and single plane health monitoring research[D]. Guanghan:Civil Aviation Flight University of China, 2011:4-6(in Chinese).
[4] 张士峰, 蔡洪. 航空电子产品的BAYES可靠性评估[J]. 航天控制, 1999(4):67-71. ZHANG S F, CAI H. Bayesian reliability assessment of electronic products in aviation[J]. Aerospace Control, 1999(4):67-71(in Chinese).
[5] 王辉, 王龙飞. 基于非参数统计方法的飞机部件可靠性分析[J]. 航空维修与工程, 2012(4):55-57. WANG H, WANG L F. Research on aircraft component reliability based on nonparametric statistical methods[J]. Aviation Maintenance & Engineering, 2012(4):55-57(in Chinese).
[6] 陈云翔. 可靠性与维修性工程[M]. 北京:国防工业出版社, 2007:51-79. CHEN Y X. Reliability & maintainability engineering[M]. Beijing:National Defend Industry Press, 2007:51-79(in Chinese).
[7] DUANCE P, ANDREW T. Study general aviation aircraft reliability:ASA/CR-2001-210647[R]. Washington, D.C.:NASA, 2001.
[8] 王大伟, 王伟, 冯振宇. 基于灰色理论的航空发动机可靠性指标评估方法[J]. 推进技术, 2014, 35(7):874-881. WANG D W, WANG W, FENG Z Y. Evaluation method on reliability index of aero-engine based on gray theory[J]. Journal of Propulsion Technology, 2014, 35(7):874-881(in Chinese).
[9] 陈勇刚, 罗晓利. 航空公司机队设备可靠性非线性动态评估模型[J]. 航空学报, 2013, 34(1):104-111. CHEN Y G, LUO X L. Nonlinear dynamic assessment model of airline fleet equipment reliability[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(1):104-111(in Chinese).
[10] 沈安慰, 郭基联, 王卓健. 航空装备现场数据可靠性评估方法有效性分析[J]. 航空学报, 2014, 35(5):1311-1318. SHEN A W, GUO J L, WANG Z J. Validity analysis of reliability evaluation method in aviation equipment field data[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(5):1311-1318(in Chinese).
[11] 陈勇刚, 罗晓利, 杨晓强. 航空公司机队可靠性状态识别方法[J]. 航空学报, 2014, 35(8):2217-2224. CHEN Y G, LUO X L, YANG X Q. Recognition method of airline fleet reliability status[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(8):2217-2224(in Chinese).
[12] 陈守煜, 王子茹, 罗宝力, 等. 可变模糊模式识别方法及在水电站地下厂房岩体稳定性评价中的应用[J]. 水利学报, 2011, 42(4):396-402. CHEN S Y, WANG Z R, LUO B L, et al. Method of variable fuzzy pattern recognition and it application to surrounding rock stability of water power station underground building[J]. Journal of Hydraulic Engineering, 2011, 42(4):396-402(in Chinese).
[13] 柯丽娜, 王权明, 孙新国, 等. 基于可变模糊识别模型的海水环境质量评价[J]. 生态学报, 2013, 33(6):1889-1899. KE L N, WANG Q M, SUN X G, et al. The seawater environment quality evaluation research base on variable fuzzy pattern recognition model[J]. Acta Ecologica Sinica, 2013, 33(6):1889-1899(in Chinese).
[14] 蒋良孝. 朴素贝叶斯分类器及其改进算法研究[D]. 武汉:中国地质大学, 2009:7-8. JIANG L X. Research on naive Bayes classifiers and its improved algorithms[D]. Wuhan:China University of Geosciences, 2009:7-8(in Chinese).
[15] PEARL J. Probabilistic reasoning in intelligent systems[J]. Computer Science Artificial Intelligence, 1988, 70(2):1022-1027.
[16] FRIEDMAN N, GEIGER D, GOLDSZMIDT M. Bayesian network classifiers[J]. Machine Learning, 1997, 29(2-3):131-163.
Outlines

/