Fluid Mechanics and Flight Mechanics

Design of locally reacting liner based on transfer element method and experimental validation

  • LI Zhibin ,
  • WANG Xuli ,
  • WANG Xiaoyu ,
  • SUN Xiaofeng
Expand
  • School of Energy and Power Engineering, Beihang University, Beijing 100083, China

Received date: 2018-01-26

  Revised date: 2018-04-09

  Online published: 2018-04-09

Supported by

National Natural Science Foundation of China (51676008, 51706007)

Abstract

Optimization of aero-engine nacelle liners means laying the acoustic liners with the optimum impedance in the duct to minimize the noise level. The process usually needs a numerical calculation of the full-sized target. In this paper, an optimization of the locally reacting acoustic liner for the single-stage low-speed axial compressor is carried out based on the transfer element method, and is verified experimentally. It is found that the locally reacting liner has significant effect on noise reduction of target mode. The transmission loss is 44.01 dB, and the liner exhibits certain characteristics of broadband noise reduction. The experimental results are consistent with the calculation results. The actual noise reduction effect of the liner meets the design requirement, showing that the transfer element method as a fast calculation method is applicable for liner design and optimization. The method can reduce the design cost and cycle of aero-engine nacelle liners, and is suitable for engineering application.

Cite this article

LI Zhibin , WANG Xuli , WANG Xiaoyu , SUN Xiaofeng . Design of locally reacting liner based on transfer element method and experimental validation[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018 , 39(8) : 122053 -122053 . DOI: 10.7527/S1000-6893.2018.22053

References

[1] ENVIA E. Fan noise reduction:An overview:AIAA-2001-0661[R]. Reston, VA:AIAA, 2001.
[2] 孙晓峰, 周盛.气动声学[M].北京:国防工业出版社,1993:75-90. SUN X F, ZHOU S. Aeroacoustics[M].Beijing:National Defense Industrial Press, 1993:75-90(in Chinese).
[3] TYLER J M, SOFRIN T G. Axial flow compressor noise studies[J]. Transactions of the Society of Automotive Engineers, 1962, 70:309-332.
[4] ZORUMSKI W E. Acoustic theory of axisymmetric multisection ducts:NASA TM-R-419[R]. Washington, D. C.:NASA, 1974.
[5] DUNN M H, TWEED J, FARASSAT F. The application of a boundary integral equation method to the prediction of ducted fan engine noise[J]. Journal of Sound and Vibration, 1999, 227(5):1019-1048.
[6] YANG B, WANG T Q. Investigation of the influence of liner hard-splices on duct radiation/propagation and mode scattering[J]. Journal of Sound and Vibration, 2008, 315(4-5):1016-1034.
[7] WANG X Y, SUN X F. Transfer element method with application to acoustic design of aeroengine nacelle[J]. Chinese Journal of Aeronautics, 2015, 28(2):327-345.
[8] EVERSMAN W. Turbofan noise propagation and radiation at high frequencies:NASA CR-212323[R]. Washington, D.C.:NASA, 2003.
[9] RIENSTRA W, EVERSMAN W. A numerical comparison between the multiple-scales and finite-element solution for sound propagation in lined flow ducts[J]. Journal of Fluid Mechanics, 2001, 437:367-384.
[10] OZYORUK Y, AHUJIA V, LONG L N. Time domain simulation of radiation from ducted fans with liners:AIAA-2001-2171[R]. Reston, VA:AIAA, 2001.
[11] ENVIA E, WILSON A G, HUFF D L. Fan noise:A challenge to CAA[J]. International Journal of Computational Fluid Dynamics, 2004, 18(6):471-480.
[12] SUN X F, WANG X Y, DU L, et al. A new model for the prediction of turbofan noise with the effect of locally and non-locally reacting liners[J].Journal of Sound and Vibration, 2008, 316(1):50-68.
[13] KOPIEV V F, BERSENEV Y V, VISKOVA T V, et al. Azimuthal modes measurement in an intake duct for a turbofan engine[J]. Procedia Engineering, 2017, 176:273-277.
[14] DAHL M D, HIXON D R, SUTLIFF D L. Further development of rotating rake mode measurement data analysis:AIAA-2013-2246[R]. Reston, VA:AIAA, 2013.
[15] ABOM M. Modal decomposition in ducts based on transfer function measurements between microphone pairs[J]. Journal of Sound and Vibration, 1989, 135(1):95-114.
[16] ENGHARDT L, TAPKEN U, NEISE W, et al. Turbine blade/vane interaction noise:Acoustic mode analysis using in-duct sensor rakes:AIAA-2001-2153[R]. Reston, VA:AIAA, 2001.
[17] SUZUKI T, DAY B J. Comparative study on mode-identification algorithms using a phased-array system in a rectangular duct[J]. Journal of Sound and Vibration, 2013, 347:27-45.
[18] 周迪. 多腔共振声衬在高阶模态管道声环境中的性能研究[D]. 北京:北京航空航天大学, 2016:11-14. ZHOU D. Investigation of multiple cavity resonance liner's performance in a duct with higher-order modes existing[D].Beijing:Beihang University, 2016:11-14(in Chinese).
[19] 王晓宇, 孙晓峰. 等价分布源方法新发展[J].工程热物理学报, 2006, 27(S1):109-112. WANG X Y, SUN X F. Development of the equivalent source surface[J]. Journal of Engineering Thermophysics, 2006, 27(S1):109-112(in Chinese).
[20] 王晓宇, 杜林, 孙晓峰. 考虑变截面影响的航空发动机短舱声学模型及数值结果[J]. 航空学报, 2006, 27(6):1073-1079. WANG X Y, DU L, SUN X F. A new approach for the acoustic design of aeroengine with the effect of varying cross-section aera[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(6):1073-1079(in Chinese).
[21] WANG X Y, SUN X F. On the interaction of fan stator and acoustic treatments using transfer element method[J]. Fluid Dynamics Research, 2010, 42(1):153-168.
[22] TAPKEN U, ENGHARDT L. Optimization of sensor arrays for radial mode analysis in flow ducts:AIAA-2006-2638[R]. Reston, VA:AIAA, 2006.
[23] TAPKEN U, BAUERS R, ARNOLD F, et al. Turbomachinery exhaust noise radiation experiments-Part 2:In-duct and far-field mode analysis:AIAA-2008-2858[R]. Reston, VA:AIAA, 2008.
[24] BLACODON D. Spinning mode analysis of the acoustic field generated by a turboshaft engine[J]. Journal of Aircraft, 2015, 29(6):1073-1079.
[25] SIJTSMA P, ZILLMANN J. In-duct and far-field mode detection techniques:AIAA-2007-3439[R]. Reston, VA:AIAA, 2007.
[26] ZHOU D, WANG X Y, CHEN J, et al. Sound generation by non-synchronously oscillating rotor blades in turbomachinery[J]. Journal of Sound and Vibration, 2015, 355:150-171.
[27] GUESS A W. Calculation of perforated plate liner parameters from specified acoustic resistance and reactance[J]. Journal of Sound and Vibration, 1975, 40(1):119-137.
[28] 乔渭阳. 航空发动机气动声学[M]. 北京:北京航空航天大学出版社, 2010:141-157. QIAO W Y. Aeroacoustics of aero-engine[M].Beijing:Beihang University Press, 2010:141-157(in Chinese).
[29] DYER I. Measurement of noise sources in ducts[J]. Journal of the Acoustical Society of America, 2005, 30(9):833-841.
Outlines

/