Fluid Mechanics and Flight Mechanics

Modeling and analysis of distributed boundary layer ingesting propulsion system

  • DA Xingya ,
  • FAN Zhaolin ,
  • XIONG Neng ,
  • WU Junqiang ,
  • ZHAO Zhongliang
Expand
  • High Speed Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China

Received date: 2018-01-26

  Revised date: 2018-04-09

  Online published: 2018-04-09

Supported by

National Natural Science Foundation of China (11602291)

Abstract

The aft body boundary layer ingesting technology can significantly improve the fuel economy of aircraft. However, the design and analysis methods for such a propulsion system have not been developed yet. To provide supportive theories and data on the distributed boundary layer ingesting propulsion system of N3-X aircraft, the numerical analysis method based on integral boundary layer equations is used and the power-thrust ratio is introduced to analyze the effect of boundary layer conditions and propulsion system parameters on the system performance. The computational model and procedure are validated through a comparison between the benchmark condition and N3-X. Analyses show that 50% boundary layer ingestion can improve the fuel consumption efficiency by 4%. The smaller the shape factor is or the larger the momentum thickness is, the less the fuel consumption is. The power-thrust ratio is weakly relevant to the inlet area ratio, but the ratio decreases with the increase of the inlet Mach number or fan efficiency, or with the decrease of the fan pressure ratio, fan loss or jet velocity.

Cite this article

DA Xingya , FAN Zhaolin , XIONG Neng , WU Junqiang , ZHAO Zhongliang . Modeling and analysis of distributed boundary layer ingesting propulsion system[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018 , 39(7) : 122048 -122048 . DOI: 10.7527/S1000-6893.2018.22048

References

[1] GREITZER E M, BONNEFOY P A, DELAROSABLANCO E, et al. N+3 aircraft concept designs and trade studies. Volume 1:NASA-CR-2010-216794[R]. Washington, D.C.:NASA, 2010.
[2] ASHCRAFT S W, PADRON A S, PASCIONI K A, et al. Review of propulsion technologies for N+3 subsonic vehicle concepts:NASA-TM-2011-217239[R]. Washington, D.C.:NASA, 2011.
[3] SMITH A M O, ROBERTS H E. The jet airplane utilizing boundary layer air for propulsion[J]. Journal of the Aeronautical Sciences, 1947, 14(2):97-109.
[4] SMITH L H. Wake ingestion propulsion benefit[J]. Journal of Propulsion and Power, 1993, 9(1):74-82.
[5] RODRIGUEZ D L, KROO I M. A 2D multidisciplinary design method for boundary layer ingesting inlets:AIAA-1999-0838[R]. Reston, VA:AIAA, 1999.
[6] RODRIGUEZ D L. A 3D multidisciplinary design method for boundary layer ingesting inlets:AIAA-2000-0424[R]. Reston, VA:AIAA, 2000.
[7] DAGGETT D L, KAWAI R, FRIEDMAN D. Blended wing body systems studies:Boundary layer ingestion inlets with active flow control:NASA-CR-2003-212670[R]. Washington, D.C.:NASA, 2003.
[8] KAWAI R T, FRIEDMAN D M, SERRANO L. Blended wing body (BWB) boundary layer ingestion (BLI) inlet configuration and system studies:NASA-CR-2006-214534[R]. Washington, D.C.:NASA, 2006.
[9] FREULER P N. Boundary layer ingesting inlet design for a silent aircraft[D]. Cambridge, MA:Massachusetts Institute of Technology, 2005:3-45.
[10] PLAS A. Performance of a boundary layer ingesting propulsion system[D]. Cambridge, MA:Massachusetts Institute of Technology, 2006:3.
[11] PLAS A, SARGEANT M, MADANI V, et al. Performance of a boundary layer ingesting (BLI) propulsion system:AIAA-2007-0450[R]. Reston, VA:AIAA, 2007.
[12] FELDER J L, KIM H D, BROWN G V. Turboelectric distributed propulsion engine cycle analysis for hybrid-wing-body aircraft:AIAA-2009-1132[R]. Reston, VA:AIAA, 2009.
[13] HAMEL J A, MURROW K D. Gas-electric propulsion system for an aircraft:EP20160152115[P]. 2016-01-20.
[14] GRAY J, MADER C A, KENWAY G K W, et al. Approach to modeling boundary layer ingestion using a fully coupled propulsion-RANS model:AIAA-2017-1753[R]. Reston, VA:AIAA, 2017.
[15] 闫万方, 吴江浩, 张艳来. 分布式推进关键参数对BWB飞机气动特性影响[J]. 北京航空航空大学学报, 2015, 41(6):1055-1065. YAN W F, WU J H, ZHANG Y L. Effects of distributed propulsion crucial variables on aerodynamic performance of blended wing body aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(6):1055-1065(in Chinese).
[16] 项洋, 吴江浩, 张艳来. BLI效应下整流罩设计对翼型气动特性的影响[J]. 北京航空航空大学学报, 2016, 42(5):945-952. XIANG Y, WU J H, ZHANG Y L. Effects of cowling design on aerodynamic performance of airfoil with BLI[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(5):945-952(in Chinese).
[17] 宁乐, 谭慧俊, 孙姝. 有无边界层吸入对S弯进气道流动特性的影响[J]. 推进技术, 2017, 38(2):266-274. NING L, TAN H J, SUN S. Effects of boundary layer ingestion on flow characteristics of an S-shaped inlet[J]. Journal of Propulsion Technology, 2017, 38(2):266-274(in Chinese).
[18] SEDDON J, GOLDSMITH E L. Intake aerodynamics[M]. Oxford:Blackwell Science Ltd., 1999:209-220.
[19] MATTINGLY J D, HEISER W H, PRATT D T. Aircraft engine design[M]. Reston, VA:AIAA, 2002:541-546.
[20] DRELA M. Two-dimensional transonic aerodynamic design and analysis using the Euler equations[D]. Cambridge, MA:Massachusetts Institute of Technology, 1985:72-108.
[21] SWAFFORD T W. Analytical approximation of two-dimensional separated turbulent boundary-layer velocity profiles[J]. AIAA Journal, 1983, 21(6):923-926.
[22] FLOREA R V, VOYTOVYCH D, TILLMAN G, et al. Aerodynamic analysis of a boundary-layer-ingesting distortion-tolerant fan:GT2013-94656[R]. New York:ASME, 2013.
Outlines

/