Electronics and Electrical Engineering and Control

DP-SA based airborne passive coherent location

  • GUO Yunfei ,
  • ZHANG Peinan ,
  • CAI Zhi
Expand
  • 1. School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China;
    2. No. 28 Institute, China Electronics Technology Group Corporation(CETC), Nanjing 210007, China

Received date: 2017-10-31

  Revised date: 2017-12-29

  Online published: 2018-04-09

Supported by

National Natural Science Foundation of China (61573123)

Abstract

To address the problem of Airborne Passive Coherent Location (APCL) in heavy clutter, a method for single target passive coherernt location is proposed based on Dynamic Programming-State Augmentation (DP-SA). Based on the error propagation theory, the state transition is analyzed considering transmitter location uncertainty. The state transition is then used to construct the cost function in the Dynamic Programming (DP) framework. The backtracking threshold of the DP is derived using the extreme value theory, which helps to improve the detection probability of the low observable target. To reduce the effect of transmitter location uncertainty on tracking performance, the measurement covariance is modified online. In addition, the state augment technique is invoked to estimate the target state and the transmitter state simultaneously. Simulation results verify effectiveness of the proposed method.

Cite this article

GUO Yunfei , ZHANG Peinan , CAI Zhi . DP-SA based airborne passive coherent location[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018 , 39(7) : 321835 -321835 . DOI: 10.7527/S1000-6893.2018.21835

References

[1] INGGS M. Passive coherent location as cognitive radar[J]. IEEE Aerospace and Electronic Systems Magazine, 2010, 25(5):12-17.
[2] GUO Y F, THARMARASA R, KIRUBARAJAN T, et al.Passive coherent location with unknown transmitter states[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(1):148-168.
[3] GASSIER G, CHABRIEL G, BARRÈRE J S, et al. A unifying approach for disturbance cancellation and target detection in passive radar using OFDM[J]. IEEE Transactions on Signal Processing, 2016, 64(22):5959-5971.
[4] CHOI S, CROUSE D, WILLETT P, et al. Multistatic target tracking for passive radar in a DAB/DVB network:Initiation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(3):2460-2469.
[5] 万显荣, 梁龙, 但阳鹏, 等. 移动平台外辐射源雷达实验研究[J]. 电波科学学报, 2015, 30(2):383-390. WAN X R, LIANG L, DAN Y P, et al.Experimental research of passive radar on moving platform[J]. Chinese Journal of Radio Science, 2015, 30(2):383-390(in Chinese).
[6] 关欣, 胡东辉, 仲利华, 等. 一种高效的外辐射源雷达高径向速度目标实时检测方法[J]. 电子与信息学报, 2013, 35(3):581-588. GUAN X, HU D H, ZHONG L H, et al. An effective real-time target detection algorithm for high radial speed targets in passive radar[J]. Journal of Electronics and Information Technology, 2013, 35(3):581-588(in Chinese).
[7] 杨鹏程, 吕晓德, 张丹, 等. 机载外辐射源雷达空时处理中距离徙动校正算法研究[J]. 电子与信息学报, 2016, 38(12):3230-3237. YANG P C, LV X D, ZHANG D, et al. Research on range migration compensation algorithm in space time processing for airborne passive radar[J]. Journal of Electronics and Information Technology, 2016, 38(12):3230-3237(in Chinese).
[8] LIU J, LI H B, HIMED B. Two target detection algorithms for passive multistatic radar[J]. IEEE Transactions on Signal Processing, 2014, 62(22):5930-5939.
[9] PUNITHAKUMAR K, KIRUBARAJAN T, HERNANDEZ M.Multisensor deployment using PCRLBS, incorporating sensor deployment and motion uncertainties[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(4):1474-1485.
[10] HO K C, YANG L.On the use of a calibration emitter for source localization in the presence of sensor position uncertainty[J]. IEEE Transactions on Signal Processing, 2008, 56(12):5758-5772.
[11] 王聪, 王海鹏, 熊伟, 等. 一种基于最小二乘拟合的数据关联算法[J]. 航空学报, 2016, 37(5):1603-1613. WANG C, WANG H P, XIONG W, et al. Data association algorithm based on least square fitting[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(5):1603-1613(in Chinese).
[12] TONISSEN S M, EVANS R J. Performance of dynamic programming techniques for track-before-detect[J]. IEEE Transactions on Aerospace and Electronic Systems, 1996, 32(4):1440-1451.
[13] JOHNSTON L A, KRISHNAMURTHY V. Performance analysis of a dynamic programming track before detect algorithm[J]. IEEE Transactions on Aerospace and Electronic Systems, 2002, 38(1):228-242.
[14] SIEGEL K M, ALPERIN H A, BONKOWSKI R R, et al. Bistatic radar cross sections of surfaces of revolution[J]. Journal of Applied Physics, 1955, 26(3):297-305.
[15] HOTTE D, SIRAGUSA R, DUROC Y,et al. Radar cross-section measurement in millimetre-wave for passive millimetre-wave identification tags[J]. Microwaves Antennas and Propagation Iet, 2015, 9(15):1733-1739.
[16] MARCUS S W. Bistatic RCS of spherical chaff clouds[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(9):4091-4099.
[17] APRILE A, GROSSI E, LOPS M, et al. Track-before-detect for sea clutter rejection:Tests with real data[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(3):1035-1045.
[18] DADASHI M, ABDOLLAHI H, TAULER R.Error propagation along the different regions of multivariate curve resolution feasible solutions[J]. Chemometrics and Intelligent Laboratory Systems, 2017, 162:203-213.
[19] 盛骤, 谢式千, 潘承毅. 概率论与数理统计[M]. 4版. 北京:高等教育出版社, 2008:169-171. SHENG Z, XIE S Q, PAN C Y. Probability theory and mathematical statistics[M]. 4nd ed. Beijing:Higher Education Press, 2008:169-171(in Chinese).
[20] SCHOENECKER S, WILLETT P, BAR-SHALOM Y.Extreme-value analysis for ML-PMHT, part 1:Threshold determination[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(4):2500-2514.
[21] GUO Y F, THARMARASA R, RAJAN S, et al. Passive tracking in heavy clutter with sensor location uncertainty[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(4):1536-1554.
[22] PIKORA K, EHLERS F. Analysis of the FKIE passive radar data set with GMPHD and GMCPHD[C]//IEEE International Conference on Information Fusion. Piscataway, NJ:IEEE Press, 2013:272-279.
Outlines

/