Material Engineering and Mechanical Manufacturing

A quasi-static compression constitutive model for knitted-dapped metal rubber considering temperature effect

  • LI Tuo ,
  • BAI Hongbai ,
  • CAO Fengli
Expand
  • 1. Department of Vehicle and Electrical Engineering, Shijiazhuang Extension of Army Engineering University, Shijiazhuang 050003, China;
    2. School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350116, China

Received date: 2018-01-30

  Revised date: 2018-03-22

  Online published: 2018-04-03

Supported by

National Defence Pre-research Foundation(99502040604)

Abstract

Based on the Sherwood-Frost equation and characteristics of the material, the constituent parts and forms of the constitutive equation for the knitted-dapped metal rubber considering temperature effect are discussed. According to the quasi-static compression experimental data gained at different temperatures, the parameters for the constitutive equation are obtained by fitting. Considering the experimental data of different specimens with different densities at different temperatures, numerical simulations are conducted to validate the constitutive equation. The results show that the simulation results are in good agreement with the experimental results. The obtained constitutive equation can satisfy the requirements for estimation of the quasi-static compression constitutive relation of the knitted-dapped metal rubber at high temperature.

Cite this article

LI Tuo , BAI Hongbai , CAO Fengli . A quasi-static compression constitutive model for knitted-dapped metal rubber considering temperature effect[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018 , 39(10) : 422062 -422062 . DOI: 10.7527/S1000-6893.2018.22062

References

[1] 侯军芳, 白鸿柏, 李冬伟, 等. 高低温环境金属橡胶减振器阻尼性能试验研究[J]. 航空材料学报, 2006, 26(6):50-54. HOU J F, BAI H B, LI D W, et al. Test research of damping performance of metal rubber damper at high-low temperature[J]. Journal of Aeronautical Materials, 2006, 26(6):50-54(in Chinese).
[2] 侯军芳, 白鸿柏, 李冬伟, 等. 高低温环境下金属橡胶材料疲劳特性试验研究[J]. 宇航材料工艺, 2007(2):77-80. HOU J F, BAI H B, LI D W, et al. Experimental investigation on fatigue characteristics of metal-rubber at high & low temperature[J]. Aerospace Materials & Technology, 2007(2):77-80(in Chinese).
[3] 颜秉金. 高温环境下金属橡胶隔振器的性能分析及实验研究[D]. 哈尔滨:哈尔滨工业大学, 2011. YAN B J. Dynamic and static experimental study on metal rubber vibration isolator in high-temperature environment[D]. Harbin:Harbin Institute of Technology, 2011(in Chinese).
[4] 李冬伟, 白鸿柏, 杨建春, 等.金属橡胶-钢丝绳索型减摆阻尼器动力学建模与参数识别[J]. 航空学报, 2006, 27(6):1097-1101. LI D W, BAI H B, YANG J C, et al. Dynamic modeling and parameter identification of metal rubber-steel wire shimmy damper[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(6):1097-1101(in Chinese).
[5] 李宇燕, 黄协清. 密度和形状因子变化时金属橡胶材料的本构关系[J]. 航空学报, 2008, 29(4):1084-1090. LI Y Y, HUANG X Q. Constitutive relation for metal-rubber with different density and shape factor[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(4):1084-1090(in Chinese).
[6] 李拓, 白鸿柏, 路纯红, 等. 编织-嵌槽型金属橡胶的压缩性能研究[J]. 振动与冲击, 2014, 33(13):142-147. LI T, BAI H B, LU C H, et al. Compression property of knitted-dapped metal rubber[J]. Journal of Vibration and Shock, 2014, 33(13):142-147(in Chinese).
[7] 曹凤利, 白鸿柏, 任国权, 等. 基于变长度悬臂梁的金属橡胶材料本构模型[J]. 机械工程学报, 2012, 48(24):61-66. CAO F L, BAI H B, REN G Q, et al. Constitutive model of metal rubber material based on curved cantilever beam of variable length[J]. Journal of Mechanical Engineering, 2012, 48(24):61-66(in Chinese).
[8] CAO F L, BAI H B, LI D W, et al. A constitutive model of metal rubber for hysteresis characteristics based on meso-mehanical method[J]. Rare Metal Materials and Engineering, 2016, 45(1):1-6.
[9] ALEXANDER M U. Constants of metal rubber material[J]. Modern Applied Science, 2014, 8(5):216-223.
[10] MA Y H, ZHANG Q C, ZHANG D Y, et al. The mechanics of shape memory alloy metal rubber[J]. Acta Materialia, 2015, 96:89-100.
[11] 闫辉, 姜洪源, 赵宏宇, 等.金属橡胶材料温度特性分析[J]. 稀有金属材料与工程, 2011, 40(12):2092-2095. YAN H, JIANG H Y, ZHAO H Y, et al. Temperature characteristics of metal rubber material[J]. Rare Metal Materials and Engineering, 2011, 40(12):2092-2095(in Chinese).
[12] 马艳红, 仝小龙, 朱彬, 等. 金属橡胶热物理性能理论与试验研究[J]. 物理学报, 2013, 62(4):048101. MA Y H, TONG X L, ZHU B, et al. Theoretical and experimental investigation on thermophysical properties of metal rubber[J]. Acta Physica Sinica, 2013, 62(4):048101(in Chinese).
[13] 习会峰, 刘逸平, 汤立群, 等. 考虑温度效应的泡沫铝静态压缩本构模型[J]. 哈尔滨工程大学学报, 2013, 34(8):1000-1005. XI H F, LIU Y P, TANG L Q, et al. Constitutive model of aluminum foam with temperature effect under quasi-static compression[J]. Journal of Harbin Engineering University, 2013, 34(8):1000-1005(in Chinese).
[14] 王鹏飞, 徐松林, 胡时胜. 基于温度与应变率相互耦合的泡沫铝本构关系[J]. 高压物理学报, 2014, 28(1):23-28. WANG P F, XU S L, HU S S. A constitutive relation of aluminum foam coupled with temperature and strain rate[J]. Chinese Journal of High Pressure Physics, 2014, 28(1):23-28(in Chinese).
[15] 李微, 梁慧, 陈荐, 等. 多孔Cu-Ni-Al合金的高温压缩变形行为及本构关系[J]. 机械工程学报, 2015, 51(2):58-64. LI W, LIANG H, CHEN J, et al. High temperature deformation behaviors and constructive relation of the porous Cu-Ni-Al sintered alloys[J]. Journal of Mechanical Engineering, 2015, 51(2):58-64(in Chinese).
[16] SHERWOOD J A, FORST C C. Constitutive modeling and simulation of energy absorbing polyurethane foam under impact loading[J]. Polymer Engineering & Science, 1992, 32(16):1138-1146.
[17] 敖宏瑞, 姜洪源, 夏宇宏, 等. 金属橡胶弹性迟滞回线的一种新的建模方法[J]. 中国矿业大学学报, 2004, 33(4):453-456. AO H R, JIANG H Y, XIA Y H, et al. Simplified description method of elasto-hysteresis loop of metal rubber material[J]. Journal of China University of Mining & Technology, 2004, 33(4):453-456(in Chinese).
[18] 白鸿柏, 路纯红, 曹凤利, 等. 金属橡胶材料及工程应用[M]. 北京:科学出版社, 2014:233-236. BAI H B, LU C C, CAO F L, et al. Metal rubber material and its engineering application[M]. Beijing:Science Press, 2014:233-236(in Chinese).
[19] JOHNSON G R, COOK W H. A constitutive model and data for metal subjected to large strains, high strain rates and high temperature[C]//Proceedings of the Seventh International Symposium on Ballistics. Hague, Netherlands, 1983:541-547.
[20] 李国强, 蒋守超, 林桂祥. 钢结构抗火计算与设计[M]. 北京:中国建筑工业出版社, 1999:75-98. LI G Q, JIANG S C, LIN G X. Fire safety calculation and design of steel structures[M]. Beijing:China Architecture & Building Press, 1999:75-98(in Chinese).
[21] 王振清, 韩玉来, 王永军, 等. 火灾场冲击波载荷作用下简支钢梁动力响应[J]. 振动与冲击, 2007, 26(4):69-72. WANG Z Q, HAN Y L, WANG Y J, et al. Dynamic response of a steel beam simply supported under shock wave in fire field[J]. Journal of Vibration and Shock, 2007, 26(4):69-72(in Chinese).
[22] 董秀萍. 一种新型多孔金属材料(金属橡胶)的结构与力学行为[D]. 北京:北京科技大学, 2008. DONG X P. Experimental and modeling research on structures and pivotal performances of metal rubber materials[D]. Beijing:University of Science & Technology Beijing, 2008(in Chinese).
[23] 古柏林. 1Cr18Ni9Ti及其TiN/Ti复合涂层高温微动磨损研究[D]. 成都:西南交通大学, 2010. GU B L. Research on high temperature fretting wear of 1Cr18Ni and TiN/Ti composite coatings[D]. Chengdu:Southwest Jiaotong University, 2010(in Chinese).
[24] 杨忠诚, 谢发勤, 姚小飞, 等. 温度对NM500和0Cr18Ni9Ti干摩擦磨损性能的影响[J]. 材料导报, 2013, 27(11):96-100. YANG Z C, XIE F Q, YAO X F, et al. Effects of temperature on tribological properties of NM500 and 0Cr18Ni9Ti under dry friction and wear[J]. Materials Review, 2013, 27(11):96-100(in Chinese).
[25] 李拓, 白鸿柏, 路纯红. 编织-嵌槽型金属橡胶制备工艺及试验研究[J]. 机械科学与技术, 2015, 34(3):481-484. LI T, BAI H B, LU C H. Study on preparation technology and tests of knitted-dapped metal rubber[J]. Mechanical Science and Technology for Aerospace Engineering, 2015, 34(3):481-484(in Chinese).
[26] 胡时胜, 刘建飞, 王梧. 硬质聚氨酯泡沫塑料本构关系的研究[J]. 力学学报, 1998, 30(2):151-156. HU S S, LIU J F, WANG W. Study of the constitutive relationship of rigid polyurethane foam[J]. Acta Mechanica Sinica, 1998, 30(2):151-156(in Chinese).
Outlines

/