Fluid Mechanics and Flight Mechanics

Measuring technology for vertical fin load of T-shaped empennage layout

  • ZHANG Haitao ,
  • YU Jianhu ,
  • LI Zhirui ,
  • LI Shaopeng ,
  • ZHAO Yan
Expand
  • Institute of Aircraft, Chinese Flight Test Establishment, Xi'an 710089, China

Received date: 2018-02-02

  Revised date: 2018-02-26

  Online published: 2018-04-02

Abstract

Considering that the lower horizontal stabilizer set on the T-shaped empennage affects the load of the vertical fin, a method for measuring the vertical fin load of the T-shaped empennage in the actual flight test is proposed. By analyzing the effect of the horizontal stabilizer load on the vertical fin, an asymmetric calibration loading mode for the horizontal stabilizer is designed, and is introduced into the vertical fin load equation modeling. The equation is used to measure the vertical fin flight load of a certain type of aircraft in the type certificate flight test. The flight test results show that the measuring error of the load equation is decreased from 5.3% to 3.14%, horizontal stabilizer asymmetric bending load has severe effect on bending of the vertical fin, yaw maneuver can reach 57.6% of the bending of the vertical fin when the aircraft is highly loaded, and roll maneuver can reach 61.9% of the bending of the vertical fin when the aircraft is highly loaded.

Cite this article

ZHANG Haitao , YU Jianhu , LI Zhirui , LI Shaopeng , ZHAO Yan . Measuring technology for vertical fin load of T-shaped empennage layout[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019 , 40(3) : 122074 -122074 . DOI: 10.7527/S1000-6893.2018.22074

References

[1] 中国民用航空局. 中国民用航空规章:CCAR-25-R4[S]. 北京:中国民用航空局, 2011. Civil Aviation Administration of China. Chinese civil aviation regulations:CCAR-25-R4[S]. Bejing:Civil Aviation Administration of China, 2011(in Chinese).
[2] 总装备部. 军用飞机强度和刚度规范, 第十部分:飞行试验:GJB67.10A-2008[S]. 北京:总装备部军标出版发行部, 2008:1-10. General Equipment Department. Military airplane structural strength specification Part10:Flight tests:GJB67.10A-2008[S]. Beijing:General Equipment Department Military Standard Press, 2008:1-10(in Chinese).
[3] 吴宗岱, 陶宝琪. 应变测量原理及技术[M]. 北京:国防工业出版社,1982:34-37. WU Z D, TAO B Q. Strain measurement principle and technology[M]. Beijing:National Defense Industry Press, 1982:34-37(in Chinese).
[4] SKOPINSKI T H, AIKEN W S, HUSTON W B. Calibration of strain-gage installation in aircraft structures for measurement of flight loads:NACA-TR-1178[R]. Washington, D. C.:NASA, 1954.
[5] М.Л.克利亚奇科. 飞机强度飞行试验(静载荷)[M]. 汤吉晨, 译. 西安:航空航天部《ASST》系统工程办公室, 1992:21-23. KLIQKO М Л. Aircraft strength test (static load)[M]. TANG J C, translated. Xi'an:ASST Engineering Office of Ministry of Aeronautics and Astronautics, 1992:21-23(in Chinese).
[6] KWAK D Y, YOSHIDA K. Flight test measurements of surface pressure on unmanned scaled supersonic experimental airplane[C]//24th Applied Aerodynamics Conference. Reston, VA:AIAA, 2006.
[7] 郭正旺, 李昭广, 王仲燕, 等. 用内式六分量应变天平实测导弹挂飞载荷[J]. 航空学报, 2010, 31(7):1403-1409. GUO Z W, LI Z G, WANG Z Y, et al. Measuring missile's suspension flight loads using built-in six-component strain-gage balance[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(7):1403-1409(in Chinese).
[8] VOLANTHEN M, FOOTE P, KALLIOPI DIAMANTI K. Development of a practical optical fiber system for health monitoring composite structures:AIAA-2006-2116[R]. Reston, VA:AIAA, 2006.
[9] LIZOTTE A M, LOKOS W A. Deflection-based aircraft structural loads estimation with comparation to flight[C]//46th AIAA/ASME/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston, VA:AIAA, 2005.
[10] BAKALYAR J. Validation tests of fiber optic strain-based operational shape and load measurements[C]//20th AIAA/ASME/AHS Adaptive Structures Conference. Reston, VA:AIAA, 2012.
[11] GUO H, XIAO G, MRAD N, et al. Fiber optic sensors for structural health monitoring of air platforms[J]. Sensors, 2010, 11:3687-3705.
[12] WILLIAM A, STAUF L R. Strain-gage loads calibration parametric study:NASA/TM-2004-212853[R]. Washington, D. C.:NASA, 2004.
[13] 范华飞, 何发东,赵燕. 自适应飞行载荷实测模型[J]. 机械科学与技术, 2015, 34(5):817-820. FAN H F, HE F D, ZHAO Y. An adaptive measurement model of flight loads[J]. Mechanical Science and Technology for Aerospace Engineering, 2015, 34(5):817-820(in Chinese).
[14] 范华飞, 汪文君. 基于主成分分析的飞行载荷实测技术[J]. 价值工程, 2017, 36(15):101-103. FAN H F, WANG W J. Technology to flight loads measurements based on principal component analysis[J]. Value Engineering, 2017, 36(15):101-103(in Chinese).
[15] NELSON S A. Strain gage selection in loads equations using a genetic algorithm:NASA CR 4597[R]. Washington, D. C.:NASA, 1994.
[16] HALLE M, THIELECKE F. Flight loads estimation using local model networks[C]//29th Congress of the International Council of the Aeronautical Sciences. Bonn:ICAS, 2014.
[17] 赵燕. 基于遗传算法与评估模型的飞行载荷实测研究[J]. 航空学报, 2014, 35(9):2506-2512. ZHAO Y. Flight load measurement based on genetic algorithm and evaluating method[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(9):2506-2512(in Chinese).
[18] 闫楚良, 张书明, 卓宁生. 飞机机翼结构载荷测量试验力学模型与数据处理[J]. 航空学报, 2000, 21(1):56-59. YAN C L, ZHANG S M, ZHUO N S. Mechanical model and data processing of load measurement test for the airplane's wing structure[J]. Acta Aeronautica et Astronautica Sinica, 2000, 21(1):56-59(in Chinese).
[19] JENKINS J M, DEANGELIS V M. A summary of numerous strain-gage load calibrations on aircraft wings and tails in a technology format:NASA-TM-4804[R]. Washington, D.C.:NASA, 1997.
[20] 赵燕, 曹虎成, 蒋启登, 等. 一种基于检验载荷的自动选电桥方法[J]. 科学技术与工程, 2011, 11(4):900-903. ZHAO Y, CAO H C, JIANG Q D, et al. A method of selecting electrical bridge by computer based on validation loads[J]. Science Technology and Engineering, 2011, 11(4):900-903(in Chinese).
Outlines

/