Material Engineering and Mechanical Manufacturing

A fault tolerant path planning method for space manipulator based on position and orientation reachable space

  • JIA Qingxuan ,
  • WANG Xuan ,
  • CHEN Gang ,
  • SUN Hanxu ,
  • GUO Wen
Expand
  • School of Automation, Beijing University of Posts and Telecommunications, Beijing 100876, China

Received date: 2018-01-06

  Revised date: 2018-03-19

  Online published: 2018-03-19

Supported by

National Natural Science Foundation of China (61573066,61403038);National Basic Research Program of China (2013CB733000)

Abstract

In order that the space manipulator can complete follow-up tasks after the joint-locked failure, a fault tolerant path planning method for the space manipulator is proposed based on position and orientation reachable space. The Newton-Raphson method is used to compute artificial joint limits of the space manipulator, and the degraded workspace that can meet the task requirements is obtained. By constructing orientation reachability indexes, the position and orientation reachable space relative to base calibration is then established. The traditional A* algorithm is evolved by adding the minimum singular value cost to the evaluation function. In the established position and orientation reachable space, the fault tolerant path planning of the space manipulator is realized by the evolved A* algorithm. The proposed method, which integrates the advantages of the position and orientation reachable space and the evolved A* algorithm, realizes trajectory searching of the space manipulator and meet the requirements for singularity avoiding and reachability of position and orientation after the joint-locked failure. A kinematic model for the 7-DOF manipulator is built, and numerical simulation is carried out. Simulation results verify the effectiveness of the proposed method.

Cite this article

JIA Qingxuan , WANG Xuan , CHEN Gang , SUN Hanxu , GUO Wen . A fault tolerant path planning method for space manipulator based on position and orientation reachable space[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018 , 39(8) : 422000 -422000 . DOI: 10.7527/S1000-6893.2018.22000

References

[1] IQBAL J, ISLAM R U, ABBAS S Z, et al. Automating industrial tasks through mechatronic systems-A review of robotics in industrial perspective[J]. Tehnicki Vjesnik, 2016, 23(3):917-924.
[2] 温卓漫, 王延杰, 邸男, 等. 空间站机械臂位姿测量中合作靶标的快速识别[J]. 航空学报, 2015, 36(4):1330-1338. WEN Z M, WANG Y J, DI N, et al. Fast recognition of cooperative target used for position and orientation measurement of space station's robot arm[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(4):1330-1338(in Chinese).
[3] JIA Q X, LI T, CHEN G, et al. Velocity jump reduction for manipulator with single joint failure[C]//The 2014 IEEE International Conference on Multisensor Fusion and Information Integration for Intelligent Systems. Piscataway, NJ:IEEE Press, 2014:1-6.
[4] MU Z G, ZHANG B, XU W F, et al. Fault tolerance kinematics and trajectory planning of a 6-DOF space manipulator under a single joint failure[C]//The 2016 IEEE International Conference on Real-Time Computing and Robotics. Piscataway, NJ:IEEE Press, 2016:483-488.
[5] XU W F, SHE Y, XU Y S. Analytical and semi-analytical inverse kinematics of SSRMS-type manipulators with single joint locked failure[J]. Acta Astronautica, 2014, 105(1):201-217.
[6] ROBERTS R G, JAMISOLA R S, MACIEJEWSKI A A. Identifying the failure-tolerant workspace boundaries of a kinematically redundant manipulator[C]//The 2007 IEEE International Conference on Robotics and Automation. Piscataway, NJ:IEEE Press, 2007:4517-4523.
[7] LEWIS C L, MACIEJEWSKI A A. Fault tolerant operation of kinematically redundant manipulators for locked joint failures[J]. IEEE Transactions on Robotics & Automation, 1997, 13(4):622-629.
[8] HOOVER R C, ROBERTS R G, MACIEJEWSKI A A. Implementation issues in identifying the failure-tolerant workspace boundaries of a kinematically redundant manipulator[C]//The 2007 IEEE International Conference on Intelligent Robots and Systems. Piscataway, NJ:IEEE Press, 2007:3528-3533.
[9] HOOVER R C, ROBERTS R G, MACIEJEWSKI A A, et al. Designing a failure-tolerant workspace for kinematically redundant robots[J]. IEEE Transactions on Automation Science & Engineering, 2015, 12(4):1421-1432.
[10] YANG C F, ZHENG S T, JIN J, et al. Forward kinematics analysis of parallel manipulator using modified global Newton-Raphson method[J]. Journal of Central South University of Technology, 2010, 17(6):1264-1270.
[11] MIAO C, LI J. Autonomous landing of small unmanned aerial rotorcraft based on monocular vision in GPS-denied area[J]. Acta Automatica Sinica, 2015, 2(1):109-114.
[12] XU W F, PENG J Q, LIANG B, et al. Hybrid modeling and analysis method for dynamic coupling of space robots[J]. IEEE Transactions on Aerospace & Electronic Systems, 2016, 52(1):85-98.
[13] LENG Y Q, YANG Z, WEI Z, et al. Attitude analysis of reachable space for spatial manipulator[C]//The 27th Chinese Control and Decision Conference, 2015:4927-4931.
[14] JIA Q X, LI T, CHEN G, et al. Trajectory optimization for velocity jumps reduction considering the unexpectedness characteristics of space manipulator joint-locked failure[J]. International Journal of Aerospace Engineering, 2016, 2016(7):1-14.
[15] 田华亭, 李涛, 秦颖. 基于A*改进算法的四向移动机器人路径搜索研究[J]. 控制与决策, 2017, 32(6):1007-1012. TIAN H T, LI T, QIN Y. Research of four-way mobile robot path search based on improved A* algorithm[J]. Control and Decision, 2017, 32(6):1007-1012(in Chinese).
[16] 李冲, 张安, 毕文豪. 单边矩形扩展A~*算法[J]. 机器人, 2017, 39(1):46-56. LI C, ZHANG A, BI W H. Single-boundary rectangle expansion A~* algorithm[J]. Robot, 2017, 39(1):46-56(in Chinese).
[17] ELHALAWANY B M, ABDEL-KADER H M, TAGELDEEN A, et al. Modified a algorithm for safer mobile robot navigation[C]//The 2013 IEEE International Conference on Modelling, Identification & Control. Piscataway, NJ:IEEE Press, 2013:74-78.
[18] 关晓颖, 陈果, 林桐. 特征选择的多准则融合差分遗传算法及其应用[J]. 航空学报, 2016, 37(11):3455-3465. GUAN X Y, CHEN G, LIN T. Feature selection method based on differential evolution and genetic algorithm with multi-criteria evaluation and its applications[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11):3455-3465(in Chinese).
[19] 邱涤珊, 郭浩, 贺川, 等. 敏捷成像卫星多星密集任务调度方法[J]. 航空学报, 2013, 34(4):882-889. QIU D S, GUO H, HE C, et al. Intensive task scheduling method for multi-agile imaging satellites[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(4):882-889(in Chinese).
[20] WANG M, LUO J, WALTER U. Trajectory planning of free-floating space robot using particle swarm optimization[J]. Acta Astronautica, 2015, 112(1):77-88.
[21] OZDEMIR M. Singularity robust balancing of parallel manipulators following inconsistent trajectories[J]. Robotica, 2016, 34(9):2027-2038.
[22] 袁文翀, 王从庆, 武和雷, 等. 自由浮动空间冗余度机械臂避奇异规化的混沌运动抑制控制[J]. 计算机与现代化, 2012, 2012(2):56-60. YUAN W C, WANG C Q, WU H L, et al. Chaos suppression control for free-floating space redundant manipulator during avoidance singularity[J]. Computer and Modernization, 2012, 2012(2):56-60(in Chinese).
[23] QIU C W, CAO Q X, MIAO S H. An on-line task modification method for singularity avoidance of robot manipulators[J]. Robotica, 2009, 27(4):539-546.
[24] 徐文福, 梁斌, 刘宇, 等. 一种新的PUMA类型机器人奇异回避算法[J]. 自动化学报, 2008, 34(6):670-675. XU W F, LIANG B, LIU Y, et al. A novel approach to avoid singularities of PUMA-type manipulators[J]. Acta Automatica Sinica, 2008, 34(6):670-675(in Chinese).
[25] LUO J J, ZONG L J, WANG M M, et al. Optimal capture occasion determination and trajectory generation for space robots grasping tumbling objects[J]. Acta Astronautica, 2017, 136(1):380-386.
[26] SHE Y, XU W F, SU H J, et al. Fault-tolerant analysis and control of SSRMS-type manipulators with single-joint failure[J]. Acta Astronautica, 2016, 120(1):270-286.
[27] HE B, HE X L, HAN L Z, et al. Working space analysis and simulation of modular service robot arm based on Monte Carlo method[J]. Applied Mechanics & Materials, 2010, 34-35:1104-1108.
[28] 赵京, 缪萍, 荆红梅. 冗余度机械臂关节运动和末端运动的同步容错规划[J]. 机械工程学报, 2003, 39(3):53-57. ZHAO J, MIAO P, JING H M. Synchronous fault-tolerant planning of joint motion and end motion of redundant manipulators[J]. Journal of Mechanical Engineering, 2003, 39(3):53-57(in Chinese).
[29] DONG H, DU Z, CHIRIKJIAN G S. Workspace density and inverse kinematics for planar serial revolute manipulators[J]. Mechanism & Machine Theory, 2013, 70(6):508-522.
Outlines

/