Solid Mechanics and Vehicle Conceptual Design

Multiaxial fatigue life prediction of an HPT disc based on critical plane-damage parameter

  • XU Shen ,
  • ZHU Shunpeng ,
  • HAO Yongzhen ,
  • LIAO Ding
Expand
  • Centre for System Reliability & Safety, School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China

Received date: 2017-12-08

  Revised date: 2017-12-26

  Online published: 2018-03-07

Supported by

National Natural Science Foundation of China (11672070,11302044); China Postdoctoral Science Foundation (2017T100697, 2015M582549); the Fundamental Research Funds for the Central Universities (ZYGX2016J208)

Abstract

Multiaxial fatigue life prediction for a High Pressure Turbine (HPT) disc and a GH4169 alloy sample was performed using critical plane methods. Results show that the SWT (Smith-Watson-Topper) model can accurately predict uniaxial fatigue life, but demonstrates poor accuracy for multiaxial fatigue life prediction. The Fatemi-Socie (FS) model shows a good ability for uniaxial fatigue life prediction, but gives conservative multiaxial fatigue life predictions as it takes into account only the effect of the normal stress of the maximum shear strain amplitude plane on fatigue damage. In this paper, a new multiaxial fatigue critical plane-damage parameter model is proposed by considering the maximum shear strain amplitude as the main damage control parameter, and the correction parameter formed by normal stress/strain on the maximum shear strain amplitude plane as the second control parameter for fatigue damage prediction. Experimental data of a GH4169 alloy sample and an HPT disc show that the proposed damage parameter model can provide better predictions than the SWT, FS and Wang-Brown (WB) models.

Cite this article

XU Shen , ZHU Shunpeng , HAO Yongzhen , LIAO Ding . Multiaxial fatigue life prediction of an HPT disc based on critical plane-damage parameter[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018 , 39(9) : 221930 -221937 . DOI: 10.7527/S1000-6893.2018.21930

References

[1] WANG R Z, ZHANG X C, GONG J G, et al. Creep-fatigue life prediction and interaction diagram in nickel-based GH4169 superalloy at 650℃ based on cycle-by-cycle concept[J]. International Journal of Fatigue, 2017, 97:114-123.
[2] WANG R Z, ZHANG X C, TU S T, et al. The effects of inhomogeneous microstructure and loading waveform on creep-fatigue behavior in a forged and precipitation hardened nickel-based superalloy[J]. International Journal of Fatigue, 2017, 97:190-201.
[3] ZHU S P, YANG Y J, HUANG H Z, et al. A unified criterion for fatigue-creep life prediction of high temperature components[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2017, 231(4):677-688.
[4] 詹志新, 佟阳, 李彬恺, 等. 考虑冲击缺陷的钛合金板的疲劳寿命预估[J]. 航空学报, 2016, 37(7):2200-2207. ZHAN Z X, TONG Y, LI B K, et al. Fatigue life prediction of titanium plate considering impact defect[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(7):2200-2207(in Chinese).
[5] HU D, MENG F, LIU H, et al. Experimental investigation of fatigue crack growth behavior of GH2036 under combined high and low cycle fatigue[J]. International Journal of Fatigue, 2016, 85:1-10.
[6] KERMANPUR A, SEPEHRI AMIN H, ZIAEI-RAD S, et al. Failure analysis of Ti6Al4V gas turbine compressor blades[J]. Engineering Failure Analysis, 2008, 15(8):1052-1064.
[7] GOLDEN P J, CALCATERRA J R. A fracture mechanics life prediction methodology applied to dovetail fretting[J]. Tribology International, 2006, 39(10):1172-1180.
[8] CHEN L, LIU Y, XIE L. Power-exponent function model for low-cycle fatigue life prediction and its applications--Part Ⅱ:Life prediction of turbine blades under creep-fatigue interaction[J]. International Journal of Fatigue, 2007, 29(1):10-19.
[9] 荆甫雷, 王荣桥, 胡殿印, 等. 单晶高温疲劳损伤参量的选取与寿命建模[J]. 航空学报, 2016, 37(9):2749-2756. JING F L, WANG R Q, HU D Y, et al. Damage parameter determination and life modeling for high temperature fatigue of single crystals[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(9):2749-2756(in Chinese).
[10] 王荣桥, 荆甫雷, 胡殿印. 基于临界平面的镍基单晶高温合金疲劳寿命预测模型[J]. 航空动力学报, 2013, 28(11):2587-2592. WANG R Q, JING F L, HU D Y. Fatigue life prediction model based on critical plane of nickel-based single crystal superalloy[J]. Journal of Aeronautical Power, 2013, 28(11):2587-2592(in Chinese).
[11] FATEMI A, SOCIE D F. A critical plane to multiaxial fatigue damage including out-of-phase loading[J]. Fatigue and Fracture of Engineering Materials and Structures, 1988, 11(3):149-165.
[12] WANG C H, BROWN M W. A path-independent parameter for fatigue under proportional and non-proportional loading[J]. Fatigue & Fracture of Engineering Materials & Structures, 1993, 16(12):1285-1298.
[13] WANG C H, BROWN M W. Multiaxial random load fatigue:Life prediction techniques and experiments[C]//Proceedings of the Fourth International Conference on Biaxial/Multiaxial Fatigue, 1994:367-380.
[14] SMITH R N, WATSON P, TOPPER T H. A stress-strain function for the fatigue of metals[J]. Journal of Materials, 1970, 5:767-778.
[15] KANDIL F A, BROWN M W, MILLER K J. Biaxial low-cycle fatigue failure of 316 stainless steel at elevated temperatures[M]//Mechanical Behavior and Nuclear Applications of Stainless Steel at Elevated Temperatures. Pittsburgh, PA:Metals Society, 1982:46-103.
[16] ZHONG B, WANG Y R, WEI D S, et al. A new life prediction model for multiaxial fatigue under proportional and non-proportional loading paths based on the pi-plane projection[J]. International Journal of Fatigue, 2017, 102:241-251.
[17] ALBINMOUSA J, JAHED H. Multiaxial effects on LCF behavior and fatigue failure of AZ31B magnesium extrusion[J]. International Journal of Fatigue, 2014, 67:103-116.
[18] BABAEI S, GHASEMI-GHALEBAHMAN A, HAJIGHORBANI R. A fatigue model for sensitive materials to non-proportional loadings[J]. International Journal of Fatigue, 2015, 80:266-277.
[19] JIANG Y, SEHITOGLU H. Fatigue and stress analysis of rolling contact[R]. Urbana-Champaign:College of Engineering, University of Illinois at Urbana-Champaign, 1992.
[20] GATES N R, FATEMI A. On the consideration of normal and shear stress interaction in multiaxial fatigue damage analysis[J]. International Journal of Fatigue, 2017, 100:322-336.
[21] ZHU S P, LEI Q, WANG Q Y. Mean stress and ratcheting corrections in fatigue life prediction of metals[J]. Fatigue & Fracture of Engineering Materials & Structures, 2017, 40(9):1343-1354.
[22] ZHU S P, LEI Q, HUANG H Z, et al. Mean stress effect correction in strain energy-based fatigue life prediction of metals[J]. International Journal of Damage Mechanics, 2017, 26(8):1219-1241.
[23] 吴志荣, 胡绪腾, 宋迎东. 基于最大切应变幅和修正SWT参数的多轴疲劳寿命预测模型[J]. 机械工程学报, 2013, 49(2):59-66. WU Z R, HU X T, SONG Y D. Multi-axial fatigue life prediction model based on maximum shear strain amplitude and modified SWT parameter[J]. Journal of Mechanical Engineering, 2013, 49(2):59-66(in Chinese).
[24] 李静, 孙强, 李春旺, 等. 多轴载荷下缺口试件疲劳寿命预测研究[J]. 固体力学学报, 2011, 32(1):37-42. LI J, SUN Q, LI C W, et al. Fatigue life prediction for notched specimen under multiaxial loading[J]. Acta Mechanica Solida Sinica, 2011, 32(1):37-42(in Chinese).
[25] INCE A, GLINKA G. A generalized fatigue damage parameter for multiaxial fatigue life prediction under proportional and non-proportional loadings[J]. International Journal of Fatigue, 2014, 62:34-41.
[26] YU Z Y, ZHU S P, LIU Q. A new energy-critical plane damage parameter for multiaxial fatigue life prediction of turbine blades[J]. Materials, 2017, 10(5):513.
[27] 吴志荣. 钛合金多轴疲劳寿命预测方法研究[D]. 南京:南京航空航天大学, 2014:15-46. WU Z R. Research on multi-axial fatigue life prediction method for titanium alloy[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2014:15-46(in Chinese).
[28] 颜鸣皋. 中国航空材料手册. 第二卷:高温合金[S]. 北京:中国标准出版社, 2002. YAN M G. Handbook of aeronautical materials in China:Second volume:Superalloys[S]. Beijing:Standards Press of China, 2002(in Chinese).
[29] SUN G Q, SHANG D G, BAO M. Multiaxial fatigue damage parameter and life prediction under low cycle loading for GH4169 alloy and other structural materials[J]. International Journal of Fatigue, 2010, 32(7):1108-1115.
[30] ZHU S P, FOLETTI S, BERETTA S. Probabilistic framework for multiaxial LCF assessment under material variability[J]. International Journal of Fatigue, 2017, 103:371-385.
[31] CHABOCHE J L. Constitutive equations for cyclic plasticity and cyclic viscoplasticity[J]. International Journal of Plasticity, 1989, 5(3):247-302.
[32] SINCLAIR G B, CORMIER N G, et al. Contact stresses in dovetail attachments:Finite element modeling[J]. Journal of Engineering for Gas Turbines & Power, 2002, 124(1):182-189.
[33] MAKTOUF W, AMMAR K, NACEUR I B, et al. Multiaxial high-cycle fatigue criteria and life prediction:Application to gas turbine blade[J]. International Journal of Fatigue, 2016, 92:25-35.
Outlines

/