Material Engineering and Mechanical Manufacturing

Simulation analysis of features of overhanging structure fabricated by selective laser melting

  • LIN Huijie ,
  • SHEN Lida ,
  • JIANG Jinhui ,
  • XIE Deqiao ,
  • LIANG Huixin ,
  • FAN Qinchun
Expand
  • 1. College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
    2. College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
    3. Nanjing Zhongke Raycham Laser Technology Co., Ltd., Nanjing 210046, China

Received date: 2017-11-27

  Revised date: 2018-03-07

  Online published: 2018-03-07

Supported by

National Natural Science Foundation of China (U1537105); National Key Research and Development Plan (2016YFB1100500); Key Support Projects for Jiangsu Science and Technology Support Program (BE2014009-1); Competition Support Project for Jiangsu Science and Technology Support Program (BE2015161); Key Support Projects for Jiangsu Science and Technology Support Program (BE2016010-3)

Abstract

The temperature field and stress field of the overhanging structure fabricated by selective laser melting are simulated. Finite element analysis software is used to establish a three-dimensional transient model for the structure. The influence of laser power and scanning speed on the forming quality of the structure is analyzed numerically and validated experimentally. The results show that in the forming process of the structure, the temperature of the molten pool located at the overhanging position is obviously higher than that located at the central position when laser scanning these position. The maximum residual stress occurs at the coincident crossover points of the layer scan region and the substrate. Obvious deformation occurs at the position of the overhanging structure. When the ratio of laser power to sweep velocity is constant, the greater the laser power is, the larger deformation the overhanging structure has.

Cite this article

LIN Huijie , SHEN Lida , JIANG Jinhui , XIE Deqiao , LIANG Huixin , FAN Qinchun . Simulation analysis of features of overhanging structure fabricated by selective laser melting[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018 , 39(7) : 421897 -421897 . DOI: 10.7527/S1000-6893.2018.21897

References

[1] KRUTH J P, VANDENBROUCKE B, VAERENBERGH J V, et al. Benchmarking of different SLS/SLM processes as rapid manufacturing techniques[C]//International Conference of Polymers & Moulds Innovations(PMI). Gent, Belgium:Polymers & Moulds Innovations, 2005.
[2] VRANCKEN B, CAIN V, KNUTSEN R, et al. Residual stress via the contour method in compact tension specimens produced via selective laser melting[J]. Scripta Materialia, 2014, 87(87):29-32.
[3] SHIOMI M, OSAKADA K, NAKAMURA K, et al. Residual stress within metallic model made by selective laser melting process[J]. CIRP Annals-Manufacturing Technology, 2004, 53(1):195-198.
[4] WANG D, YANG Y, ZHANG M, et al. Study on SLM fabrication of precision metal parts with overhanging structures[C]//IEEE International Symposium on Assembly and Manufacturing. Piscataway, NJ:IEEE Press, 2013:222-225.
[5] MERCELIS P, KRUTH J P, VAERENBERGH J V. Feedback control of selective lasermelting[C]//Advanced Research in Virtual and Rapid Prototyping. Leiria, Portugal:CRC Press, 2007:521-527.
[6] WANG D, YANG Y, YI Z, et al. Research on the fabricating quality optimization of the overhanging surface in SLM process[J]. International Journal of Advanced Manufacturing Technology, 2013, 65(9-12):1471-1484.
[7] CALIGNANO F. Design optimization of supports for overhanging structures in aluminum and titanium alloys by selective laser melting[J]. Materials & Design, 2014, 64(9):203-213.
[8] 刘婷婷, 张长东, 廖文和, 等. 激光选区熔化成形悬垂结构熔池行为试验分析[J]. 中国激光, 2016, 43(12):70-76. LIU T T, ZHANG C D, LIAO W H, et al. Pool behavior experimental analysis of overhang structure by selective laser melting[J]. Chinese Journal of Lasers, 2016,43(12):70-76(in Chinese).
[9] CHEN H, GU D, XIONG J, et al. Improving additive manufacturing processability of hard-to-process overhanging structure by selective laser melting[J]. Journal of Materials Processing Technology, 2017, 250:99-108.
[10] ROBERTS I A, WANG C J, ESTERLEIN R, et al. A three-dimensional finite element analysis of the temperature field during laser melting of metal powders in additive layer manufacturing[J]. International Journal of Machine Tools & Manufacture, 2009, 49(12):916-923.
[11] 陈德宁, 刘婷婷, 廖文和, 等. 扫描策略对金属粉末选区激光熔化温度场的影响[J]. 中国激光, 2016, 43(4):68-74. CHEN D N, LIU T T, LIAO W H, et al. Temperature field during selective laser melting of metal powder under different scanning strategies[J]. Chinese Journal of Lasers, 2016, 43(4):68-74(in Chinese).
[12] 李雅莉. 选区激光熔化AlSi10Mg温度场及应力场数值模拟研究[D]. 南京:南京航空航天大学, 2015:15-24. LI Y L. Numerical investigation on temperature field and stress field during selective laser melting of AlSi10Mg[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2015:15-24(in Chinese).
[13] THIJS L, VERHAEGHE F, CRAEGHS T, et al. A study of the microstructural evolution during selective laser melting of Ti-6Al-4V[J]. Acta Materialia, 2010, 58(9):3303-3312.
[14] 周建兴, 刘瑞祥, 陈立亮, 等. 凝固过程数值模拟中的潜热处理方法[J]. 铸造, 2001, 50(7):404-407. ZHOU J X, LIU R X, CHEN L L, et al. The approaches of latent heat treatment[J]. China Foundry, 2001, 50(7):404-407(in Chinese).
[15] YIN J, ZHU H, KE L, et al. Simulation of temperature distribution in single metallic powder layer for laser micro-sintering[J]. Computational Materials Science, 2012, 53(1):333-339.
[16] 刘洋. 激光选区熔化成型机理和结构特征直接制造研究[D]. 广州:华南理工大学, 2015:27-34. LIU Y. Research on the mechanism of selective laser melting and direct manufacturing of structural features[D]. Guangzhou:South China Universityof Technology, 2015:27-34(in Chinese).
[17] ZHAO C, FEZZAA K, CUNNINGHAM R W, et al.Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction[J]. Sci Rep, 2017, 7(1):3602.
[18] 陈军城, 俞海良, 芦凤桂, 等. 高强钢激光穿透焊熔池温度场数值模拟[J]. 应用激光, 2008, 28(3):177-180. CHEN J C, YU H L, LU F G, et al. Numerical simulation for temperature field in molten pool of deep penetration laser welding of high strength steel[J]. Applied Laser, 2008, 28(3):177-180(in Chinese).
[19] GU D, SHEN Y. Effects of processing parameters on consolidation and microstructure of W-Cu components by DMLS[J]. Journal of Alloys & Compounds, 2009, 473(1):107-115.
[20] WEI P, WEI Z, CHEN Z, et al.The AlSi10Mg samples produced by selective laser melting:Single track, densification, microstructure and mechanical behavior[J]. Applied Surface Science, 2017, 408:38-50.
[21] 邹亚桐, 魏正英, 杜军, 等. AlSi10Mg激光选区熔化成形工艺参数对致密度的影响与优化[J]. 应用激光, 2016, 36(6):656-662. ZOU Y T, WEI Z Y, DU J, et al. Effect and optimization of processing parameters on relative density of AISil0Mg alloy parts by selective laser melting[J]. Applied Laser, 2016, 36(6):656-662(in Chinese).
[22] 刘杰, 杨永强, 王迪, 等. 选区激光熔化成型悬垂结构的计算机辅助工艺参数优化[J]. 中国激光, 2012, 39(5):88-94. LIU J, YANG Y Q, WANG D, et al. Computer-aided optimization of the process parameters for fabricating overhanging structure by selective laser melting[J]. Chinese Journal of Lasers, 2012, 39(5):88-94(in Chinese).
Outlines

/