Electronics and Electrical Engineering and Control

A fast SAR-GMTI focusing method based on time reversal and reduced-order Keystone

  • WAN Jun ,
  • ZHOU Yu ,
  • ZHANG Linrang ,
  • CHEN Zhanye
Expand
  • National Laboratory of Radar Signal Processing, Xidian University, Xi'an 710071, China

Received date: 2017-11-13

  Revised date: 2018-03-07

  Online published: 2018-03-07

Supported by

National Natural Science Foundation of China (61671361, 61301285)

Abstract

This paper describes the ground moving target focusing technique for the Synthetic Aperture Radar (SAR). For the problems existing in the present methods for ground moving target focusing, a fast SAR Ground Moving Target Indication (SAR-GMTI) focusing method based on time reversal and reduced-order Keystone processing is proposed. A three-order range model is established according to the characteristics of the maneuvering target. To eliminate the effects of Doppler spectrum split caused by doppler center blur, the proposed Time Reversal Processing (TRP) and reduced-order Keystone transform processing are combined to estimate the target second-order motion parameter. The second-order phase compensation function is constructed to compensate the second-order range migration and Doppler migration, and a focused result of a moving target is obtained. The proposed method has low computational complexity without any searching procedure. Simulations are provided to verify the validity of the proposed method.

Cite this article

WAN Jun , ZHOU Yu , ZHANG Linrang , CHEN Zhanye . A fast SAR-GMTI focusing method based on time reversal and reduced-order Keystone[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018 , 39(6) : 321862 -321862 . DOI: 10.7527/S1000-6893.2018.21862

References

[1] ZHANG X P, LIAO G S, ZHU S Q, et al. Geometry-information-aided efficient motion parameter estimation for moving-target imaging and location[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(1):155-159.
[2] ZHANG S X, XING M D, GUO R, et al. Interference suppression algorithm for SAR based on time-frequency transform[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(10):3765-3779.
[3] DENG B, QIN Y L, WANG H Q, et al. Angular extent effect of micromotion target in SAR image by polar format algorithm[J]. Journal of Systems Engineering and Electronics, 2014, 25(3):428-433.
[4] TANG S Y, ZHANG L R, GUO P, et al. Processing of monostatic SAR with general configurations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(12):6529-6546.
[5] YANG J, ZHANG Y. An airborne SAR moving target imaging and motion parameters estimation algorithm with azimuth-dechirping and the second-order Keystone transform applied[J]. IEEE Journal of Selected Topics Applied Earth Observations and Remote Sensing, 2015, 8(8):3967-3976.
[6] PELICH R, LONGPE N, MERCIER G, et al. Vessel refocusing and velocity estimation on SAR imagery using the fractional Fourier transform[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(3):1670-1684.
[7] 梁颖, 张群, 武勇, 等. 一种FMCW SAR地面运动目标图谱域参数估计方法[J]. 航空学报, 2016, 37(5):1614-1621. LIANG Y, ZHAGN Q, WU Y, et al. A ground moving target parameter estimation method in spectrogram for FMCW SAR[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(5):1614-1621(in Chinese).
[8] 李刚, 许稼, 彭应宁, 等. 基于混合积累的SAR微弱运动目标检测[J]. 电子学报, 2007, 35(3):576-579. LI G, XU J, PENG Y N, et al. SAR weak moving target detection based on hybrid integration[J]. Acta Electronica Sinica, 2007, 35(3):576-579(in Chinese).
[9] 王肖洋, 高贵, 周石琳, 等. 一种基于双通道DPCA的SAR-GMTI杂波抑制方法[J]. 雷达学报, 2014, 3(2):241-248. WANG X Y, GAO G, ZHOU S L, et al. A clutter supression approach for SAR-GMTI based on dual-channel DPCA[J]. Journal of Radars, 2014, 3(2):241-248(in Chinese).
[10] NOVIELLO J C, FORNARO G, MARTORELLA M. Focused SAR image formation of moving targets based on doppler parameter estimation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(6):3460-3470.
[11] LI G, XIA X G, PENG Y N. A velocity estimation algorithm of moving targets using single antenna SAR[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(3):1052-1062.
[12] XU J, XIA X G, PENG S B, et al. Radar maneuvering target motion estimation based on generalized Radon-Fourier transform[J]. IEEE Transactions on Signal Processing, 2012, 60(12):6190-6201.
[13] HUANG P H, LIAO G S, YANG Z W, et al. An approach for refocusing of ground moving target without target motion parameter estimation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(1):336-350.
[14] ZHOU F, WU R, XING M D, et al. Approach for single channel SAR ground moving target imaging and motion parameter estimation[J]. IET Radar Sonar Navigation, 2007, 1(1):59-66.
[15] PERRY R P, DIPIETRO R C, FANTE R. SAR imaging of moving targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(1):188-200.
[16] XIN Z H, LIAO G S, YANG Z W, et al. A fast ground moving target focusing method based on first-order discrete polynomial-phase transform[J]. Digital Signal Processing, 2017, 60:287-295.
[17] HUANG P H, XIA X G, LIAO G S, et al. Ground moving target imaging based on keystone transform and coherently integrated CPF with a single-channel SAR[J]. IEEE Journal of Selected Topics Applied Earth Observations and Remote Sensing, 2017, 10(12):5686-5694.
[18] YANG J G, HUANG X T, JIN T, et al. New approach for SAR imaging of ground moving targets based on a Keystone transform[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(4):829-833.
[19] HUANG P H, LIAO G S, YANG Z W, et al. Ra long-time coherent integration for weak maneuvering target detection and high-order motion parameter estimation based on Keystone transform[J]. IEEE Transactions on Signal Processing, 2016, 64(15):4013-4026.
[20] HUANG P H, LIAO G S, YANG Z W, et al. Approach for space-based radar manoeuvring target detection and high-order motion parameter estimation[J]. IET Radar Sonar Navigation, 2015, 9(6):732-741.
[21] ZHU D, LI Y, ZHU Z. A Keystone transform without interpolation for SAR ground moving-target imaging[J] IEEE Geoscience and Remote Sensing Letters, 2007, 4(1):18-22.
[22] 陈展野, 周宇, 张林让, 等. 非均匀环境下利用单个数据集的STAP算法[J]. 航空学报, 2015, 36(12):3938-3946. CHEN Z Y, ZHOU Y, ZHANG L R, et al. Single data set-STAP algorithm in heterogeneous environment[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(12):3938-3946(in Chinese).
[23] PELEG S, BENJAMIN F. The discrete polynomial-phase transform[J]. IEEE Transactions on Signal Processing, 1995, 43(8):1901-1914.
Outlines

/