[1] BUDNICK J. NAVAIR air vehicle corrosion challenges[C]//Tri-Service Corrosion Conference. Washington, D.C.:US Department of Defence, 2003.[2] 张有宏, 吕国志, 陈跃良. LY12CZ铝合金预腐蚀及疲劳损伤研究[J]. 航空学报, 2005, 26(6):779-782. ZHANG Y H, LV G Z, CHEN Y L. Predicting fatigue life from pre-corroded LY-12 CZ aluminum test[J]. Acta Aeronautica et Astronautica Sinica, 2005, 26(6):779-782(in Chinese).[3] PETROYIANNIS P V, KERMANIDIS A T, AKID R, et al. Analysis of the effects of exfoliation corrosion on the fatigue behaviour of the 2024-T351 aluminum alloy using the fatigue damage map[J]. International Journal of Fatigue, 2005, 27(7):817-827.[4] 谭晓明, 张丹峰, 卞贵学. 腐蚀对新型高强度铝合金疲劳裂纹萌生机制及扩展行为的作用[J]. 机械工程学报, 2014, 50(22):76-83. TAN X M, ZHANG D F, BIAN G X. Effect of corrosion damage on fatigue crack initiation mechanism and growth behavior of high strength aluminum alloy[J]. Journal of Mechanical Engineering, 2014, 50(22):76-83(in Chinese).[5] BRAY G H, BUCCI R J, COLVIN E L, et al. Effect of prior corrosion on the S/N fatigue performance of aluminum sheet alloys 2024-T3 and 2524-T3[J]. ASTM Special Technical Publication, 1997, 1298(5):89-103.[6] MAY M E, LUC T P, SAINTIER N, et al. Effect of corrosion on the high cycle fatigue strength of martensitic stainless steel X12CrNiMoV12-3[J]. International Journal of Fatigue, 2013, 47(2):330-339.[7] KERMANIDIS A T, PETROYIANNIS P V, PANTELAKIS S G. Fatigue and damage tolerance behavior of corroded 2024 T351 aircraft aluminum alloy[J]. Theory and Applied Fracture Mechanics, 2005, 43(1):121-132.[8] AYDIN M, SAVASKAN T. Fatigue properties of zinc-aluminum alloys in 3.5% NaCl and 1% HCl solutions[J]. International Journal of Fatigue, 2004, 26(1):103-110.[9] WANG S Q, ZHANG D K, CHEN K, et al. Corrosion fatigue behaviors of steel wires used in coalmine[J]. Materials and Design, 2014, 53(1):58-64.[10] WANG Q Y, PIDAPARTI R M, PALAKAL M J. Comparative study of corrosion-fatigue in aircraft materials[J]. American Institute of Aeronautics and Astronautics, 2001, 39(2):325-330.[11] ISHIHARA S, SAKA S, NAN Z Y, et al. Prediction of corrosion fatigue lives of aluminum alloy on the basis of corrosion pit growth law[J]. Fatigue Fracture & Engineering of Materials& Structure, 2006, 29(6):472-480.[12] SRIAMAN M R, PIDAPATI R A. Life prediction of aircraft aluminum subjected to pitting corrosion under fatigue condition[J]. Journal of Aircraft, 2009, 46(4):1253-1259.[13] GHIDINI T, DONNE C D. Fatigue life predictions using fracture mechanics methods[J]. Engineering Fracture Mechanics, 2009, 76(1):134-148.[14] CODARO E N, NAKAZATO R Z, HOROVISTIZ A L, et al. An image processing method for morphological characterization and pitting corrosion evaluation[J]. Material Science and Engineering:A, 2002, 334(1-2):298-306.[15] GHALI E, DIETZEL W, KAINER K U. Testing of general and localized corrosion of magnesium alloys:A critical review[J]. Journal of Materials Engineering and Performance, 2004, 13(5):7-23.[16] LI S X, AKID R. Corrosion fatigue life prediction of a steel shaft material in seawater[J]. Engineering Failure Analysis, 2013, 34(8):324-334[17] WALDE K, HILLBERRY B M. Characterization of pitting damage and prediction of remaining fatigue life[J]. International Journal of Fatigue, 2008, 30(1):106-118.[18] WALDE K, BROCKENBROUGH J R, CRAIG B A, et al. Multiple fatigue crack growth in pre-corroded 2024-T3 aluminum[J]. International Journal of Fatigue, 2005, 27(10-12):1509-1518.[19] GRUENBERG K M, CRAIG B A, HILLBERRY B M, et al. Predicting fatigue life of pre-corroded 2024-T3 aluminum from breaking load tests[J]. International Journal of Fatigue, 2004, 26(6):615-627.[20] DUQUESNAY D L, UNDERHILL P R, BRITT H J. Fatigue crack growth from corrosion damage in 7075-T6511 aluminum alloy under aircraft loading[J]. International Journal of Fatigue, 2003, 25(5):371-377.[21] NEWMAN J C, ABBOTT W. Fatigue life calculations on pristine and corroded open-hole specimens using small-crack theory[J]. International Journal of Fatigue, 2009, 31(8-9):1246-1253.[22] ROKHLIN S I, KIM J Y, NAGY H, et al. Effect of pitting corrosion on fatigue crack initiation and fatigue life[J]. Engineering Fracture Mechanics, 1999, 62(4-5):425-444.[23] American Society for Testing Materials International. Standard test method for exfoliation corrosion susceptibility in 2XXX and 7XXX series aluminum alloys:ASTM G34-01[S]. West Conshohocken, PA:American Society for Testing and Materials International, 2007:2-7.[24] WALDE K, BROCKENBROUGHB J R, CRAIGC B A, et al. Multiple fatigue crack growth in pre-corroded 2024-T3 aluminum[J]. International Journal of Fatigue, 2005, 27(10-12):1509-1518.[25] NAN Z Y, ISHIHARA S, GOSHIMA T. Corrosion fatigue behavior of extruded magnesium alloy AZ31 in sodium chloride solution[J]. International Journal of Fatigue, 2008, 30(7):1181-1188.[26] MEDVED J J, BRETON M, IRVING P E. Corrosion pit size distributions and fatigue lives-A study of the EIFS technique for fatigue design in the presence of corrosion[J]. International Journal of Fatigue, 2004, 26(1):71-80.[27] CHAUSSUMIER M, MABRU C, SHAHZAD M, et al. A predictive fatigue life model for anodized 7050 aluminium alloy[J]. International Journal of Fatigue, 2013, 48(1):205-213.[28] GREEN A E, SNEDDON I N. The stress distribution in the neighborhood of a flat elliptic crack in an elastic solid[J]. Proceedings of the Royal Society A, 1946, 187(1009):229-260.[29] IRWIN G R. Crack extension force for a part-through crack in a plate[J]. Journal of Applied mechanics, 1962, 29(4):651-654.[30] 中国航空研究院. 应力强度因子手册[M]. 北京:科学出版社, 1993:162-168. Chinese Aeronautical Establishment. Handbook of stress intensity factors[M]. Beijing:Science Press, 1993:162-168(in Chinese).[31] XIONG J J, SHENOI R A. Fatigue and fracture reliability engineering[M]. London:Springer, 2011:86-89.[32] 北京航空材料研究所. 航空金属材料疲劳裂纹扩展速率手册[M]. 北京:北京航空材料研究所, 1984:251-256. Beijing Institue of Aeronautical Material. Handbook of fatigue crack growth rates of aeronautical metallic materials[M]. Beijing:Beijing Institute of Aeronautical Material Press, 1984:251-256(in Chinese).