Solid Mechanics and Vehicle Conceptual Design

Parabolic model of equivalent crack approach for predicting fatigue life of pre-corroded aluminum alloys

  • DENG Jinghui ,
  • CHEN Pingjian ,
  • FU Yu
Expand
  • Structure Strength Laboratory, China Helicopter Design and Research Institute, Jingdezhen 333000, China

Received date: 2017-05-16

  Revised date: 2017-11-08

  Online published: 2018-02-11

Supported by

National Natural Science Foundation of China (51375033)

Abstract

In order to save the investigating costs and reduce the research periods of the helicopter materials, the theoretical simulation method is attempted to take the place of the corrosion fatigue tests in this paper. The fatigue behaviors of the pre-corroded LD2CS and LD10CS aluminum alloys were tested in this paper. A parabolic model was presented based on the observed test phenomenon and morphology characteristics of the Scanning Electron Microscope (SEM). The novel formulations were deduced base on linear elastic fracture mechanics to calculate stress intensity of equivalent crack of corrosion pits on the surfaces of pre-corroded aluminum alloys. An algorithm was developed to predict the fatigue life of the pre-corroded aluminum alloy subjected to fatigue loading. The fatigue behaviors of pre-corroded aluminum alloys LD2CS and LD10CS were modelled using the new model and algorithm proposed. Comparison shows good agreement between experimental data and predictions based on the new model and algorithm proposed, demonstrating that the fatigue behaviors of pre-corroded aluminum alloys can be predicted more accurately by the new parabolic model than by the traditional half elliptical and semicircle models.

Cite this article

DENG Jinghui , CHEN Pingjian , FU Yu . Parabolic model of equivalent crack approach for predicting fatigue life of pre-corroded aluminum alloys[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018 , 39(2) : 221421 -221421 . DOI: 10.7527/S1000-6893.2017.221421

References

[1] BUDNICK J. NAVAIR air vehicle corrosion challenges[C]//Tri-Service Corrosion Conference. Washington, D.C.:US Department of Defence, 2003.[2] 张有宏, 吕国志, 陈跃良. LY12CZ铝合金预腐蚀及疲劳损伤研究[J]. 航空学报, 2005, 26(6):779-782. ZHANG Y H, LV G Z, CHEN Y L. Predicting fatigue life from pre-corroded LY-12 CZ aluminum test[J]. Acta Aeronautica et Astronautica Sinica, 2005, 26(6):779-782(in Chinese).[3] PETROYIANNIS P V, KERMANIDIS A T, AKID R, et al. Analysis of the effects of exfoliation corrosion on the fatigue behaviour of the 2024-T351 aluminum alloy using the fatigue damage map[J]. International Journal of Fatigue, 2005, 27(7):817-827.[4] 谭晓明, 张丹峰, 卞贵学. 腐蚀对新型高强度铝合金疲劳裂纹萌生机制及扩展行为的作用[J]. 机械工程学报, 2014, 50(22):76-83. TAN X M, ZHANG D F, BIAN G X. Effect of corrosion damage on fatigue crack initiation mechanism and growth behavior of high strength aluminum alloy[J]. Journal of Mechanical Engineering, 2014, 50(22):76-83(in Chinese).[5] BRAY G H, BUCCI R J, COLVIN E L, et al. Effect of prior corrosion on the S/N fatigue performance of aluminum sheet alloys 2024-T3 and 2524-T3[J]. ASTM Special Technical Publication, 1997, 1298(5):89-103.[6] MAY M E, LUC T P, SAINTIER N, et al. Effect of corrosion on the high cycle fatigue strength of martensitic stainless steel X12CrNiMoV12-3[J]. International Journal of Fatigue, 2013, 47(2):330-339.[7] KERMANIDIS A T, PETROYIANNIS P V, PANTELAKIS S G. Fatigue and damage tolerance behavior of corroded 2024 T351 aircraft aluminum alloy[J]. Theory and Applied Fracture Mechanics, 2005, 43(1):121-132.[8] AYDIN M, SAVASKAN T. Fatigue properties of zinc-aluminum alloys in 3.5% NaCl and 1% HCl solutions[J]. International Journal of Fatigue, 2004, 26(1):103-110.[9] WANG S Q, ZHANG D K, CHEN K, et al. Corrosion fatigue behaviors of steel wires used in coalmine[J]. Materials and Design, 2014, 53(1):58-64.[10] WANG Q Y, PIDAPARTI R M, PALAKAL M J. Comparative study of corrosion-fatigue in aircraft materials[J]. American Institute of Aeronautics and Astronautics, 2001, 39(2):325-330.[11] ISHIHARA S, SAKA S, NAN Z Y, et al. Prediction of corrosion fatigue lives of aluminum alloy on the basis of corrosion pit growth law[J]. Fatigue Fracture & Engineering of Materials& Structure, 2006, 29(6):472-480.[12] SRIAMAN M R, PIDAPATI R A. Life prediction of aircraft aluminum subjected to pitting corrosion under fatigue condition[J]. Journal of Aircraft, 2009, 46(4):1253-1259.[13] GHIDINI T, DONNE C D. Fatigue life predictions using fracture mechanics methods[J]. Engineering Fracture Mechanics, 2009, 76(1):134-148.[14] CODARO E N, NAKAZATO R Z, HOROVISTIZ A L, et al. An image processing method for morphological characterization and pitting corrosion evaluation[J]. Material Science and Engineering:A, 2002, 334(1-2):298-306.[15] GHALI E, DIETZEL W, KAINER K U. Testing of general and localized corrosion of magnesium alloys:A critical review[J]. Journal of Materials Engineering and Performance, 2004, 13(5):7-23.[16] LI S X, AKID R. Corrosion fatigue life prediction of a steel shaft material in seawater[J]. Engineering Failure Analysis, 2013, 34(8):324-334[17] WALDE K, HILLBERRY B M. Characterization of pitting damage and prediction of remaining fatigue life[J]. International Journal of Fatigue, 2008, 30(1):106-118.[18] WALDE K, BROCKENBROUGH J R, CRAIG B A, et al. Multiple fatigue crack growth in pre-corroded 2024-T3 aluminum[J]. International Journal of Fatigue, 2005, 27(10-12):1509-1518.[19] GRUENBERG K M, CRAIG B A, HILLBERRY B M, et al. Predicting fatigue life of pre-corroded 2024-T3 aluminum from breaking load tests[J]. International Journal of Fatigue, 2004, 26(6):615-627.[20] DUQUESNAY D L, UNDERHILL P R, BRITT H J. Fatigue crack growth from corrosion damage in 7075-T6511 aluminum alloy under aircraft loading[J]. International Journal of Fatigue, 2003, 25(5):371-377.[21] NEWMAN J C, ABBOTT W. Fatigue life calculations on pristine and corroded open-hole specimens using small-crack theory[J]. International Journal of Fatigue, 2009, 31(8-9):1246-1253.[22] ROKHLIN S I, KIM J Y, NAGY H, et al. Effect of pitting corrosion on fatigue crack initiation and fatigue life[J]. Engineering Fracture Mechanics, 1999, 62(4-5):425-444.[23] American Society for Testing Materials International. Standard test method for exfoliation corrosion susceptibility in 2XXX and 7XXX series aluminum alloys:ASTM G34-01[S]. West Conshohocken, PA:American Society for Testing and Materials International, 2007:2-7.[24] WALDE K, BROCKENBROUGHB J R, CRAIGC B A, et al. Multiple fatigue crack growth in pre-corroded 2024-T3 aluminum[J]. International Journal of Fatigue, 2005, 27(10-12):1509-1518.[25] NAN Z Y, ISHIHARA S, GOSHIMA T. Corrosion fatigue behavior of extruded magnesium alloy AZ31 in sodium chloride solution[J]. International Journal of Fatigue, 2008, 30(7):1181-1188.[26] MEDVED J J, BRETON M, IRVING P E. Corrosion pit size distributions and fatigue lives-A study of the EIFS technique for fatigue design in the presence of corrosion[J]. International Journal of Fatigue, 2004, 26(1):71-80.[27] CHAUSSUMIER M, MABRU C, SHAHZAD M, et al. A predictive fatigue life model for anodized 7050 aluminium alloy[J]. International Journal of Fatigue, 2013, 48(1):205-213.[28] GREEN A E, SNEDDON I N. The stress distribution in the neighborhood of a flat elliptic crack in an elastic solid[J]. Proceedings of the Royal Society A, 1946, 187(1009):229-260.[29] IRWIN G R. Crack extension force for a part-through crack in a plate[J]. Journal of Applied mechanics, 1962, 29(4):651-654.[30] 中国航空研究院. 应力强度因子手册[M]. 北京:科学出版社, 1993:162-168. Chinese Aeronautical Establishment. Handbook of stress intensity factors[M]. Beijing:Science Press, 1993:162-168(in Chinese).[31] XIONG J J, SHENOI R A. Fatigue and fracture reliability engineering[M]. London:Springer, 2011:86-89.[32] 北京航空材料研究所. 航空金属材料疲劳裂纹扩展速率手册[M]. 北京:北京航空材料研究所, 1984:251-256. Beijing Institue of Aeronautical Material. Handbook of fatigue crack growth rates of aeronautical metallic materials[M]. Beijing:Beijing Institute of Aeronautical Material Press, 1984:251-256(in Chinese).
Outlines

/