Solid Mechanics and Vehicle Conceptual Design

Carrier-based aircraft equipment system-of-systems and index demonstration method

  • QU Yepin ,
  • JIN Huiming ,
  • HE Zhaoxiong
Expand
  • Naval Research Academy, Shanghai 200436, China

Received date: 2017-08-14

  Revised date: 2018-01-02

  Online published: 2018-01-16

Supported by

Provincial/Ministerial Level Project

Abstract

Demonstration of the system and indexes of the carrier-based aircraft is highly constrained as the aircraft is a carrier-based system of systems, and the requirement for multi-carrier-integrated maintenance support is high.A fuzzy-transformation-theory-based method is proposed to set up the relationship between equipment requirements and mission requirements. The system architecture and the typical configuration schemes for the aircraft are given, considering the specialty of fleet combat of the carrier-aircraft and the constraint on deck/hangar dimensions. Simulation of the carrier-based aircraft operation process is conducted. The index demonstration and optimization methods are proposed, which highlight the special factors of fleet combat, carrier suitability, marine environment adaptation, etc., and a system of tactical and technical indexes is constructed.A demonstration support system oriented towards expert group decision making is constructed, and the basic framework and workflow of the system is introduced.

Cite this article

QU Yepin , JIN Huiming , HE Zhaoxiong . Carrier-based aircraft equipment system-of-systems and index demonstration method[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018 , 39(5) : 221675 -221675 . DOI: 10.7527/S1000-6893.2017.21675

References

[1] 郭润兆, 段卓毅, 李小卫. 舰载机机舰适配性体系研究[J]. 航空科学技术, 2014, 25(3):10-13. GUO R Z, DUAN Z Y, LI X W. Study on adaptation system of carrier-based aircraft[J]. Aeronautic Science and Technology, 2014, 25(3):10-13(in Chinese).
[2] 李清, 闫娟, 朱家强, 等. 航空武器装备顶层论证技术发展现状与趋势[J]. 航空学报, 2016, 37(1):1-2. LI Q, YAN J, ZHU J Q, et al. State of art development trend of top-level demonstration technology for aviation weapon equipment[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1):1-2(in Chinese).
[3] 赵定海, 黄玺瑛. 装备需求工程导论[M]. 北京:国防工业出版社, 2013:184. ZHAO D H, HUANG X Y. Introduction of equipment requirements engineering[M]. Beijing:National Defense Industry Press, 2013:184(in Chinese).
[4] GUNZINGER M A. Sustaining America's strategic advantage in long-range strike[R]. Washington, D.C.:Center for Strategic and Budgetary Assessments, 2010.
[5] MULLEN M G.Capabilities-based assessment (CBA) user's guide Version 3:JCS J-8[R]. Washington, D.C.:Force Structure, Resources, and Assessments Directorate, 2009.
[6] 张志兵, 郭齐胜. 陆军武器装备需求论证理论与方法[M]. 北京:国防工业出版社, 2012:136-161. ZHANG Z B, GUO Q S. Theory and method of requirement demonstration for army weapon equipment[M]. Beijing:National Defense Industry Press, 2012:136-161(in Chinese).
[7] 王侃, 王金良, 赵东波, 等. 装甲装备论证需求满足度评估方法[J]. 装甲兵工程学院学报, 2016, 30(2):6-11. WANG K, WANG J L, ZHAO D B, et al. Evaluation approach for requirement satisfactory degree of armored equipment demonstartion[J]. Journal of Academy of Armored Force Engineering, 2016, 30(2):6-11(in Chinese).
[8] 石福丽. 基于QFD/SysML的舰船装备需求分析方法研究[D]. 长沙:国防科学技术大学, 2006:17-32. SHI F L. Research on requirement analysis of ship equipment based on QFD &SysML[D]. Changsha:National University of Defense Technology, 2006:17-32(in Chinese).
[9] 倪卫星. 国外舰载直升机在航母编队中的地位和作用[J]. 直升机技术, 2015(1):70-73. NI W X. Research on helicopter's role and function in foreign carrier-aircraft fleet[J]. Helicopter Technique, 2015(1):70-73(in Chinese).
[10] 叶文, 李海军, 胡卫强, 等. 航空武器系统分析[M]. 北京:国防工业出版社, 2011:22-25. YE W, LI H J, HU W Q, et al. Analysis of aviation weapon system[M]. Beijing:National Defense Industry Press, 2011:22-25(in Chinese).
[11] 贾俊秀, 刘爱军, 李华. 系统工程学[M]. 西安:西安电子科技大学出版社, 2014:28-30. JIA J X, LIU A J, LI H. System engineering[M]. Xi'an:Xidian University Press, 2014:28-30(in Chinese).
[12] 刘忠, 林华, 周德超. 军事系统工程[M]. 北京:国防工业出版社, 2014:5-7. LIU Z, LIN H, ZHOU D C. Military system engineering[M]. Beijing:National Defense Industry Press, 2014:5-7(in Chinese).
[13] 杨克巍, 赵青松, 谭跃进, 等. 体系需求工程技术与方法[M]. 北京:科学出版社, 2011:8-12, 54, 219-220. YANG K W, ZHAO Q S, TAN Y J, et al. System-of-systems requirements engineering technology and method[M]. Beijing:Science Press, 2011:8-12, 54, 219-220(in Chinese).
[14] 戴娟. 基于目标与场景的用例驱动需求分析技术研究[D]. 西安:西安电子科技大学, 2012:25-41. DAI J. Research on the goal and scenario based requirements analysis technique with use case driven[D]. Xi'an:Xidian University, 2012:25-41(in Chinese).
[15] DoD Architecture Framework Working Group. DoD architecture framework Version 2.03-Volume 1:Introduction, overview, and concepts[R]. Washington, D.C.:Department of Defense, 2011:5-6.
[16] 唐幼纯, 范君晖, 李红艳, 等. 系统工程——方法与应用[M]. 北京:清华大学出版社, 2011:94-95. TANG Y C, FAN J H, LI H Y, et al. System engineering-Method and application[M]. Beijing:Tsinghua University Press, 2011:94-95(in Chinese).
[17] 付佩, 谷青范. 基于UML的可执行模型实现机制研究[J]. 航空电子技术, 2013, 44(1):10-14. FU P, GU Q F, Research of executable model realization mechanism based on UML[J]. Avionics Technology, 2013, 44(1):10-14(in Chinese).
[18] 张韧, 彭鹏, 徐志升, 等. 航母战斗群海洋环境保障体系构架初探与实验建模[J]. 解放军理工大学学报(自然科学版), 2011, 12(1):97-102. ZHANG R, PENG P, XU Z S, et al. Primary investigation and experimental modeling for aircraft carrier formation oceanic environment supporting system[J].Journal of PLA University of Science and Technology (Natural Science Edition), 2011, 12(1):97-102(in Chinese).
[19] 马世强. 起飞方式对舰载机结构重量的影响[J]. 舰载武器, 2007(5):73-78. MA S Q. Effect of takeoff mode on construction weight of shipboard plane[J]. Shipborne Weapons, 2007(5):73-78(in Chinese).
[20] 孙晓羽. 舰船运用下舰载机阻拦着舰动力学分析与仿真[D]. 哈尔滨:哈尔滨工程大学, 2012:2-9. SUN X Y. The analysis of aircraft arrested landing under the motion of aircraft carrier[D]. Harbin:Harbin Engineering University, 2012:2-9(in Chinese).
[21] 周胜明. 航母甲板运动对舰载机着舰影响仿真分析[J]. 飞机设计, 2012, 32(6):28-32. ZHOU S M. Simulation analysis on influence of carrier deck motion on carrier-based aircraft landing[J]. Aircraft Design, 2012, 32(6):28-32(in Chinese).
[22] 于瀛. 影响舰载机着舰的环境因素[J]. 现代舰船, 2012(2A):25-27. YU Y. Environmental factors affecting carrier-based aircraft landing on carrier[J]. Modern Ships, 2012(2A):25-27(in Chinese).
[23] 郭润兆, 张宏, 张健. 舰载机布局的机舰适配性设计研究[J]. 航空科学技术, 2014, 25(6):5-8. GUO R Z, ZHANG H, ZHANG J. The study on configuration adaptive design of carrier-basedaircraft[J]. Aeronautical Science & Technology, 2014, 25(6):5-8(in Chinese).
[24] 冯强, 曾声奎, 康锐. 基于多主体的舰载机综合保障过程建模方法[J]. 系统工程与电子技术, 2010, 32(1):211-216. FENG Q, ZENG S K, KANG R. Multiagent-based modeling method for integrated logistic support of the carrier aircraft[J]. Systems Engineering and Electronics, 2010, 32(1):211-216(in Chinese).
[25] 葛冰峰, 陈英武, 王军民, 等. 基于功能的武器装备体系结构描述方法[J]. 系统工程与电子技术, 2010, 32(1):94-99. GE B F, CHEN Y W, WANG J M, et al. Function-based approach for architecture description of weapons system-of-systems[J].Systems Engineering and Electronics, 2010, 32(1):94-99(in Chinese).
[26] 李巧丽, 郭齐胜. 基于能力的装备需求论证框架[J]. 军事运筹与系统工程, 2009, 23(2):35-39. LI Q L, GUO Q S. Capability-based argumentation architecture for equipment requirements[J]. Military Operations Research and Systems Engineering, 2009, 23(2):35-39(in Chinese).
[27] 陈英武, 豆亚杰, 程贲, 等. 基于作战活动分解的武器装备体系能力需求生成研究[J]. 系统工程理论与实践, 2011, 31(S1):154-163. CHEN Y W, DOU Y J, CHENG B, et al. Research on capability requirement generation of weapon system-of-systems based on operational activity decomposition[J]. Systems Engineering-Theory & Practice, 2011, 31(S1):154-163(in Chinese).
[28] IBM Inc. System architect[EB/OL].[2017-06-14]. https://www.ibm.com/support/knowledgecenter/SS6RBX_11.4.2/com.ibm.sa_base.legal.doc/topics/rsysarch_overview_base.html.
[29] DoD Architecture Framework Working Group. DoD architecture framework Version 2.03-Volume 2:Architectural data and models-Architect's guide1[R]. Washington, D.C.:Department of Defense, 2011:34-83.
[30] IBM Inc.Rational DOORS[EB/OL].[2017-06-14]. https://www.ibm.com/support/knowledgecenter/SSYQBZ.
[31] IBM Inc.Viewing DOORS objects linked to model artifacts while in rational system architect[EB/OL].[2017-06-14]. https://www.ibm.com/support/knowledgecenter/SS6RBX_11.4.2/com.ibm.sa.doors.doc/topics/r_view_model_artiface_link_doors_objects_in_sa.html.
[32] 陈水利, 李敬功, 王向公. 模糊集理论及其应用[M]. 北京:科学出版社, 2016:207-213. CHEN S L, LI J G, WANG X G. Fuzzy set theory and application[M]. Beijing:Science Press, 2016:207-213(in Chinese).
[33] 范周田. 模糊矩阵理论与应用[M]. 北京:科学出版社, 2007:1-13. FAN Z T. Fuzzy matrix theory and application[M]. Beijing:Science Press, 2007:1-13(in Chinese).
[34] 仇安全. 浅谈航母舰载机的作战使用[J]. 国际航空, 2011(10):44-45. QIU A Q. A brief discussion on the operational use of carrier-based aircraft[J]. International Aviation, 2011(10):44-45(in Chinese).
[35] 伊鸣, 罗孚. 舰载机的作战使用[J]. 兵工科技, 2011(7):29-42. YI M, LUO F. The operational use of carrier-based aircraft[J]. Ordnance Industry Science Technology, 2011(7):29-42(in Chinese).
[36] 南建设, 缪彩练, 唐诗余.联合战场信息感知系统指标体系初探[J]. 中国电子科学研究院学报, 2007, 2(1):8-13. NAN J S, MIAO C L,TANG S Y.Discussion of intelligence sensing system of combined battlefield[J]. Journal of China Academy of Electronics and InformationTechnology, 2007, 2(1):8-13(in Chinese).
[37] Department of Defense.Joint Service Specification Guides (JSSG)[EB/OL].[2017-06-14]. http://www.acqnotes.com/acqnote/tasks/joint-service-specification-guides.
[38] 赵川. JSSG系列标准及其在航空动力系统中的应用[C]//第十二届中国标准化论坛论文集. 北京:中国标准化协会, 2015:1352-1357. ZHAO C. JSSG series standard and its application in aviation engine system[C]//12th China Standardization Forum Proceedings. Beijing:China Association for Standardization, 2015:1352-1357(in Chinese).
[39] Ernest F. Expertchoice[EB/OL]. Arlington, VA:Expert Choice Inc.[2017-06-14]. http://www.expertchoice.com.
[40] IBM Inc.Rational software architect simulation toolkit[EB/OL].[2017-06-14]. http://www-03.ibm.com/software/products/en/ratisoftarchsimutool.
[41] IBM Inc.RationlTau[EB/OL].[2017-06-14]. http://www-03.ibm.com/software/products/da/ratitau/.
[42] Lindo System Inc.LINGO and optimization modeling[EB/OL].[2017-06-14]. http://www.lindo.com/index.php/products/lingo-and-optimization-modeling.
Outlines

/