Material Engineering and Mechanical Manufacturing

Anisotropic yield and damage in warm forming of AZ31 magnesium alloy sheet: Implementation of constitutive model and numerical analysis

  • ZHOU Xia ,
  • WEN Dong ,
  • SHEN Mengqi ,
  • SONG Shangyu
Expand
  • 1. State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024, China;
    2. Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China;
    3. International Research Center for Computational Mechanics, Dalian 116024, China

Received date: 2017-08-11

  Revised date: 2018-01-16

  Online published: 2018-01-16

Supported by

National Natural Science Foundation of China (11672055)

Abstract

In order to predict the forming quality of the anisotropic magnesium alloy sheet accurately, a modified GTN damage model that incorporates anisotropic/asymmetric CPB06 yield criterion and yield locus evolution with the accumulated plastic strain, the so-called CPB06-GTN anisotropy yielding model with parametric evolution is developed. The modified CPB06-GTN model is implemented into a VUMAT subroutine for ABAQUS/Explicit, and the subroutine is then tested using a single unit. The results show that the simulation predictions are in good agreement with the experimental results in uniaxial tension and compression. Using the VUMAT subroutine, not only anisotropic yielding and irregular hardening but also damage and fracture of magnesium alloys can be well predicted. In addition, the corresponding VUMAT subroutine is compiled to simulate the warm deep drawing process of magnesium alloy, and the simulation results are compared with the experimental data. The results show that the anisotropic yield CPB06-GTN damage model can well predict the deformation and fracture of the magnesium alloy. The formability of magnesium alloys can be improved by adopting the proper blank holder force and forming temperature as well as non isothermal warm forming method.

Cite this article

ZHOU Xia , WEN Dong , SHEN Mengqi , SONG Shangyu . Anisotropic yield and damage in warm forming of AZ31 magnesium alloy sheet: Implementation of constitutive model and numerical analysis[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018 , 39(5) : 421665 -421665 . DOI: 10.7527/S1000-6893.2017.21665

References

[1] 宋令慧, 王守仁, 赵宰炯. 连铸连轧镁合金AZ41微观结构与摩擦磨损性能[J]. 航空学报, 2014, 35(6):1733-1739. SONG L H, WANG S R, CHO J H. Microstructure and friction wear properties of twin-roll casting magneisum alloy AZ41[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(6):1733-1739(in Chinese).
[2] 唐荻, 王丹, 江海涛, 等. 异步轧制对AZ31镁合金组织及高温塑性的影响[J]. 塑性工程学报, 2013, 20(2):78-83. TANG D, WANG D, JIANG H T, et al. Effects of differential speed rolling process on microstructure and plastic deformation of magnesium alloy[J]. Journal of Plasticity Engineering, 2013, 20(2):78-83(in Chinese).
[3] 吴章斌, 桂良进, 范子杰. AZ31B镁合金挤压材料的力学性能与本构分析[J]. 中国有色金属学报, 2015, 25(2):293-300. WU Z B, GUI L J, FAN Z J. Mechanical properties and constitutive analysis of extruded AZ31B magnesium alloy[J]. Chinese Journal of Nonferrous Metals, 2015, 25(2):293-300(in Chinese).
[4] 钟敏, 唐伟琴, 李大永, 等. AZ31B镁合金板材温热成形极限实验研究[J]. 塑性工程学报, 2011, 18(5):59-63. ZHONG M, TANG W Q, LI D Y, et al. Experiment research on forming limit diagram (FLD) of magnesium alloy sheet AZ31B at warm condition[J]. Journal of Plasticity Engineering, 2011, 18(5):59-63(in Chinese).
[5] 何维均, 张士宏, 程明, 等. 宏观弹塑性本构模型的研究进展[J]. 塑性工程学报, 2015, 22(3):1-11. HE W J, ZHANG S H, CHENG M, et al. Review on the development of macroscopic elastic-plastic constitutive models[J]. Journal of Plasticity Engineering, 2015, 22(3):1-11(in Chinese).
[6] HILL R. A theory of the yielding and plastic flow of anisotropic metals[C]//Proceedings of the Royal Society of London Series A, Mathematical and Engineering Sciences. London:The Royal Society Publishing, 1948, 193(1033):281-297.
[7] BARLAT F, LEGE D J, BREM J C. A six-component yield function for anisotropic materials[J]. International Journal of Plasticity, 1991, 7(7):693-712.
[8] BARLAT F, MAEDA Y, CHUNG K, et al. Yield function development for aluminum alloy sheets[J]. Journal of the Mechanics and Physics of Solids, 1997, 45(11):1727-1763.
[9] BARLAT F, BREM J C, YOON J W, et al. Plane stress yield function for aluminum alloy sheets-Part 1:Theory[J]. International Journal of Plasticity, 2003, 19(9):1297-1319.
[10] HOSFORD W F. Incorporating work hardening in yield loci calculations[C]//Strength of Metals and Alloys. Aachen:Federal Republic of Germany, 1979, 775-780.
[11] CAZACU O, PLUNKETT B, BARLAT F. Orthotropic yield criterion for hexagonal closed packed metals[J]. International Journal of Plasticity, 2006, 22(7):1171-1194.
[12] PLUNKETT B, CAZACU O, BARLAT F. Orthotropic yield criteria for description of the anisotropy in tension and compression of sheet metals[J]. International Journal of Plasticity, 2008, 24(5):847-866.
[13] TARI D G, WORSWICK M J. Elevated temperature constitutive behavior and simulation of warm forming of AZ31B[J]. Journal of Materials Processing Technology, 2015, 221:40-55.
[14] 郎利辉, 杨希英, 刘康宁, 等. 一种韧性断裂准则中材料常数的计算模型及其应用[J]. 航空学报, 2015, 36(2):672-679. LANG L H, YANG X Y, LIU K N, et al. A calculating model of material constants in ductile fracture criterion and its applications[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2):672-679(in Chinese).
[15] TENG B G, YUAN S J, CHEN Z T, et al. Plastic damage of T-shape hydroforming[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(S2):s294-s301.
[16] 王瑞泽, 陈章华, 臧勇. 基于Gurson模型的镁合金板材温热冲压成形研究[J]. 北京科技大学学报, 2014, 36(4):459-466. WANG R Z, CHEN Z H, ZANG Y. Thermal stamping formability of magnesium alloy sheet based on the Gurson model[J]. Journal of University of Science and Technology Beijing, 2014, 36(4):459-466(in Chinese).
[17] GURSON A L. Continuum theory of ductile rupture by void nucleation and growth:Part 1-Yield criteria and flow rules for porous ductile media[J]. Journal of Engineering Materials and Technology, 1977, 99(1):2-15.
[18] NEEDLEMAN A, TVERGAARD V. An analysis of dynamic, ductile crack growth in a double edge cracked specimen[J]. International Journal of Fracture, 1991, 49(1):41-67.
[19] KIM J, RYOU H, KIM D, et al. Constitutive law for AZ31B Mg alloy sheets and finite element simulation for three-point bending[J]. International Journal of Mechanical Sciences, 2008, 50(10):1510-1518.
[20] STEWART J B, CAZACU O. Analytical yield criterion for an anisotropic material containing spherical voids and exhibiting tension-compression asymmetry[J]. International Journal of Solids and Structures, 2011, 48(2):357-373.
[21] YOON J, CAZACU O, MISHRA R K. Constitutive modeling of AZ31 sheet alloy with application to axial crushing[J]. Materials Science and Engineering:A, 2013, 565:203-212.
[22] WANG R, CHEN Z, LI Y, et al. Failure analysis of AZ31 magnesium alloy sheets based on the extended GTN damage model[J]. International Journal of Minerals, Metallurgy, and Materials, 2013, 20(12):1198-1207.
[23] 陈志英, 董湘怀. 各向异性GTN损伤模型及其在板料成形中的应用[J]. 上海交通大学学报, 2008, 42(9):1414-1419. CHEN Z Y, DONG X H. The Anisotropic GTN Damage model and its application in sheet metal forming[J]. Journal of Shanghai Jiaotong University, 2008, 42(9):1414-1419(in Chinese).
[24] TARI D G, WORSWICK M J, WINKLER S. Experimental studies of deep drawing of AZ31B magnesium alloy sheet under various thermal conditions[J]. Journal of Materials Processing Technolog, 2013, 213(8):1337-1347.
[25] LI W J, ZHAO G Q, MA X W, et al. Study on forming limit diagrams of AZ31B alloy sheet at different temperatures[J]. Materials & Manufacturing Processes, 2013, 28(3):306-311.
[26] LEE S, HAM H J, KWON S Y, et al. Thermal conductivity of magnesium alloys in the temperature range from -125℃ to 400℃[J]. International Journal of Thermophysics, 2013:34(12):2343-2350.
Outlines

/