Ultrahigh temperature ceramic matrix composite (C/SiC) is one of the key materials for the Thermal Protection System (TPS) of near space vehicles. The catalytic performance of the C/SiC material in the high enthalpy chemical non-equilibrium flow is the key parameter of the design, optimization and accurate evaluation of the thermal protection system of the hypersonic flight vehicle. Using the high frequency plasma wind tunnel, the surface catalytic recombination coefficients of C/SiC were determined at the surface temperature range of 1453-2003 K, in the high disassociated air with the enthalpies of 19.3-35.9 MJ/kg, and with the stagnation pressures of 1.0,1.8,3.30 and 6.0 kPa. It shows that the catalytic recombination coefficient of C/SiC under high surface temperature condition depends not only on the surface temperature but also on stagnation point pressure and the partial pressure. According to the catalytic results, the aerothermal parameters for the typical America reentry flight (H=73 km,U=6.478 km/s, Rn=410 mm) with blunt body using C/SiC and its surface temperature history with test catalytic data and full-catalytic have been carried out. The results have strengthened that accurate estimation of the aerodynamic heating and temperature response to thermal protection system are greatly affected by catalytic performance of thermal protection material.
LIU Liping
,
WANG Guolin
,
WANG Yiguang
,
ZHANG Jun
,
LUO Lei
. Catalytic performance of C/SiC composites in high enthalpy chemical non-equilibrium flow[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018
, 39(5)
: 421696
-421696
.
DOI: 10.7527/S1000-6893.2017.21696
[1] 崔尔杰. 近空间飞行器研究发展现状及关键技术问题[J]. 力学进展, 2009, 39(6):658-673. CUI E J. Research statutes development trends and key technical problems of near space flying vehicles[J]. Advances in Mechanics, 2009, 39(6):658-673(in Chinese).
[2] ANDERSON J D. Hypersonic and high temperature gas dynamics[M]. New York:McGraw-Hill Book Company, 2000:1988-1989.
[3] 瞿章华. 高超声速空气动力学[M]. 长沙:国防科技大学出版社, 2001. QU Z H. Hypersonic aerodynamics[M]. Changsha:National Defence Science and Technology Press, 2001(in Chinese).
[4] 孟松鹤, 丁小恒, 易法军, 等. 高超声速飞行器表面测热技术综述[J]. 航空学报, 2014, 35(7):1749-1775. MENG S H, DING X H, YI F J, et al. Overview of heat measurement technology for hypersonic vehicle surfaces[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(7):1749-1775(in Chinese).
[5] 孟松鹤, 金华, 王国林, 等. 热防护材料表面催化特性研究进展[J]. 航空学报, 2014, 35(2):287-302. MENG S H, JIN H, WANG G L, et al. Research advances on surface catalytic properties of thermal protection materials[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(2):287-302(in Chinese).
[6] NASLSIN R. Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors[J]. Composites Science and Technology, 2004, 64(2):155-170.
[7] 张立同. 纤维增韧碳化硅陶瓷复合材料:模拟、表征与设计[M]. 北京:化学工业出版社, 2009. ZHANG L T. Fiber-reinforced silicon carbide ceramic composites:Modelling, characterization & design[M]. Beijing:Chemical Industry Press, 2009(in Chinese).
[8] 张立同, 成来飞.连续纤维增韧陶瓷基复合材料可持续发展战略探讨[J]. 复合材料学报, 2007, 24(2):1-6. ZHANG L T, CHENG L F. Discussion on strategies of sustainable development of continuous fiber reinforced ceramic matrix composites[J]. Acta Materiae Compositae Sinica, 2007, 24(2):1-6(in Chinese).
[9] CHENG L F, XU Y D, ZHANG L T, et al. Effect of glass sealing on the oxidation behavior of three dimensional C/SiC composites in air[J]. Carbon, 2001, 39(8):1127-1133.
[10] CHENG L F, XU Y D, ZHANG L T, et al. Oxidation and defect control of CVD SiC coating on three dimensional C/SiC composites[J]. Carbon, 2002, 40(12):2229-2234.
[11] CHENG L F, XU Y D, ZHANG L T, et al. Effect of carbon interlayer on oxidation behavior of C/SiC composites with a coating from room temperature to 1500℃[J]. Materials Science and Engineering A, 2001, 30(2):219-225.
[12] GOULARD R. On catalytic recombination rates in hypersonic stagnation heat transfer[J]. Jet Propulsion, 1958, 28(11):737-745.
[13] KUROTAKI T. Construction of catalytic model on SiO2-based surface and application to real trajectory, AIAA-2000-2366[R]. Reston,VA:AIAA, 2000.
[14] WILLEY R J. Comparison of kinetic models for atom recombination on high-temperature reusable surface insulation[J]. Journal of Thermophysics and Heat Transfer, 1993, 7(1), 55-62.
[15] GORDEEV A N, KOLESNIKOV A F, YAKUSHIN M I. Effect of surface catalytic activity on non-equilibrium heat transfer in a subsonic jet of dissociated nitrogen[J]. Fluid Dynamics, 1985, 20(3):478-484.
[16] KOVALEV V L,KOLESNIKOV A F. Experimental and theoretical simulation of heterogeneous catalysis in aerothermochemistry[J]. Fluid Dynamics, 2005, 40(5):669-693.
[17] ITO T, KUROTAKI T, SUMI T, et al. Evaluation of surface catalytic effect on TPS in 110kW ICP-heated wind tunnel:AIAA-2005-189[R]. Reston, VA:AIAA, 2005.
[18] ITO T, ISHIDA K, MIZUNO, et al. 110 kW new high enthalpy wind tunnel heated by inductively coupled plasma:AIAA-2003-7023[R]. Reston, VA:AIAA, 2003.
[19] 刘丽萍, 王国林, 王一光, 等. 高焓化学非平衡流条件下防热材料表面催化特性的试验方法[J]. 航空学报, 2017, 38(10):121317. LIU L P, WANG G L,WANG Y G, et al. The methods to determine surface catalytic recombination coefficients of thermal protection material in high enthalpy dissociated flows[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(10):121317(in Chinese).
[20] LIU L P, WANG Y G, WANG G L, et al. Experiments to determine surface catalytic recombination coefficients of ultra high temperature ceramics in high temperature dissociated flows:AIAA-2017-2153[R]. Reston, VA:AIAA, 2017.
[21] FRANCESCO P, OLIVIER C, BERND H, et al. Gas/surface interaction study on ceramic matrix composite thermal protection system in the VKI plasmatron facility:AIAA-2011-3642[R]. Reston, VA:AIAA, 2011.
[22] CHAZOT O, PANERAIY F, MUYLAERT J M. Catalysis phenomena determination in plasmatron facility for flight experiment design:AIAA-2010-1248[R]. Reston, VA:AIAA, 2010.
[23] STEWART D A. Determination of surface catalytic efficiency for thermal protection materials-room temperature to their upper use limit:AIAA-1996-1869[R]. Reston, VA:AIAA,1996.
[24] PIDAN S, KURTZ M A, HERDRICH G M, et al. Recombination coefficients and spectral emissivity of silicon carbide-based thermal protection materials[J]. Journal of Thermophysics and Heat Transfer, 2005, 19(4):37-46.
[25] VLASOV A V, ZALOGIN G N, ZEMLYANSKⅡ B A, et al. Methods and results of an experimental determination of the catalytic activity of materials at high temperature[J]. Fluid Dynamics, 2003, 38(5):815-825.