Fluid Mechanics and Flight Mechanics

Aerodynamic shape design integrating vortex and shock effects for width-velocity-range

  • LIU Chuanzhen ,
  • LIU Qiang ,
  • BAI Peng ,
  • CHEN Bingyan ,
  • ZHOU Weijiang
Expand
  • China Academy of Aerospace Aerodynamics, Beijing 100074, China

Received date: 2017-10-24

  Revised date: 2017-12-20

  Online published: 2017-12-20

Supported by

National Naturel Science Foundation of China (11672281)

Abstract

This paper extends the concept of the osculating-cone waverider. The global geometrical relationships between the inlet capture curve, flow capture tube and planform contour line are derived to develop the design for the planform-controllable waverider. The vortex effect is introduced by customizing the planform for the waverider. The concept of aerodynamic width-velocity-range design with vortex-shock effects is proposed, meaning employing the vortex effect under subsonic condition and the shock effect under the super/hypersonic condition to ensure a general performance. The CFD technology is used to simulate the aerodynamic performance of the double swept configuration at the subsonic and hypersonic states. A comparison with the flat plate model with respect to the lift, drag and flow characteristics at the subsonic and supersonic states is made. Simulation results show that the planform-controllable waverider has satisfying performance under both subsonic and hypersonic condition, overcoming some deficiencies of the traditional waverider, and providing insight into the width-velocity-range design.

Cite this article

LIU Chuanzhen , LIU Qiang , BAI Peng , CHEN Bingyan , ZHOU Weijiang . Aerodynamic shape design integrating vortex and shock effects for width-velocity-range[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018 , 39(7) : 121824 -121824 . DOI: 10.7527/S1000-6893.2017.21824

References

[1] DIETRICH K. The aerodynamic design of aircraft:AIAA-2012-0448[R]. Reston, VA:AIAA, 2012.
[2] NONWEILER T R F. Aerodynamic problems of manned space vehicles[J]. Aeronautical Journal, 1959, 63(585):521-528.
[3] JONES J G, MOORE K C, PIKE J, et al. A method fo designing lifting configurations for high supersonic speeds using axisymmetric flow field[J]. Archive of Applied Mechanics, 1968, 37(1):56-72.
[4] RASMUSSEN M L. Waverider configurations derived from inclined circular and elliptic cones[J]. Journal of Spacecraft and Rockets, 1980, 17(6):537-545.
[5] LOBBIA M A, SUZZKI K. Experimental investiga-tion of a Mach 3.5 waverider designed using computa-tional fluid dynamics[J]. AIAA Journal, 2015, 53(6):1590-1601.
[6] SOBIECZKY H, DOUGHERTY F C, JONES K. Hyper-sonic waverider design from given shock waves[C]//In-ternational Hypersonic Waverider Symposium, 1990.
[7] MILLER D S, WOOD R M. Lee-side flow over delta wings at supersonic speed:NASA TP-2430[R]. Washington, D.C.:NASA, 1985.
[8] STARKEY R, LEWIS M. A simple analytical model for parametric studies of hypersonic waveriders:AIAA-1998-1616[R]. Reston, VA:AIAA, 1998.
[9] RODI E P. The osculating flowfield method of waverider geometry generation:AIAA-2005-0511[R]. Reston, VA:AIAA, 2005.
[10] RODI E P. Geometrical relationships for osculating cones and osculating flowfield waveriders:AIAA-2011-1188[R]. Reston, VA:AIAA, 2011.
[11] MOELDER S. Internal, axisymmetric, conical flow[J]. AIAA Journal, 1967, 5(7):1252-1255.
[12] 刘传振, 白鹏, 陈冰雁. 双后掠乘波体设计及性能优势分析[J]. 航空学报, 2017, 38(6):120808. LIU C Z, BAI P, CHEN B Y. Design and property advantages analysis of double swept waverider[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(6):120808(in Chinese).
[13] HUANG X Z, MEBARKI Y, BENMEDDOUR A, et al. Experimental and numerical studies of geometry effects on UCAV's aerodynamics:AIAA-2004-0403[R]. Reston, VA:AIAA, 2004.
[14] ROE P L. Approximate Riemann solvers, parameter vectors, and difference schemes[J]. Journal of Computational Physics, 1981, 43:357-372.
[15] VENKATA KRISHNAN V. On the accuracy of limiters and convergence to steady state solutions:AIAA-1993-0880[R]. Reston, VA:AIAA, 1993.
[16] KERMANI M J, PLETT E G. Modified entropy correction formula for the Roe scheme:AIAA-2001-0083[R]. Reston, VA:AIAA, 2001.
[17] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8):1598-1605.
[18] WANG Z J, CHEN R F. Fast, block lower-upper Symmet-ric Gauss-Seidel scheme for arbitrary grids[J]. AIAA Journal, 2000, 38(12):2238-2245.
[19] BOWCUTT K G. Optimization of hypersonic waveriders derived from cone flows-Including viscous effects[D]. Maryland:University of Maryland, 1986.
[20] PATRICK E R. Vortex lift waverider configurations:AIAA-2012-1238[R]. Reston, VA:AIAA, 2012.
Outlines

/