To solve the lateral-directional control problem of the full-wing solar-powered Unmanned Aerial Vehicle (UAV) without ailerons, a control approach which uses rudder deflection and differential propeller thrust to control the lateral direction is proposed. Firstly, the lateral-directional stability and manoeuvrability of this type of UAV with double propellers are analyzed. Secondly, based on the Linear Active Disturbance-Rejection Control (LADRC) theory, the roll and the yaw angle controllers are designed by using the rudder rotation and differential propeller thrust as the control outputs, respectively. Finally, considering the advantages and disadvantages of the roll and the yaw angle controllers, a rudder and propeller combined straight-line trajectory tracking scheme is designed on the base of L1 trajectory tracking theory. Simulation results show that the control method proposed has a good control performance, better robustness and wind resistance. Since the proposed controller has small computational complexity, a simple parameter setting process, and use of practical measurable physical quantities, it will provide a reference solution for further engineering applications.
MA Zhenyu
,
ZHU Xiaoping
,
ZHOU Zhou
. A lateral-directional control method combining rudder and propeller for full-wing solar-powered UAV[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018
, 39(3)
: 321633
-321633
.
DOI: 10.7527/S1000-6893.2017.21633
[1] BHATT M R. Solar power unmanned aerial vehicle:High altitude long endurance applications (HALE-SPUAV)[D]. San Jose, CA:San Jose State University, 2012:10-13.
[2] Airbus Defence and Space. Qinetiq Zephyr[EB/OL]. (2017-5-10)[2017-7-26].https://en.wikipedia.org/wiki/QinetiqZephyr.
[3] OETTERSHAGEN P, MELZER A, MANTEL T. Design of small hand-launched solar-powered UAVs:From concept study to a multi-day world endurance record flight[J]. Journal of Field Robotics, 2017, 34(7):1352-1377.
[4] OETTERSHAGEN P, MELZER A, MANTEL T. Perpetual flight with a small solar-powered UAV:Flight results, performance analysis and model validation[C]//2016 IEEE Aerospace Conference.Piscataway,NJ:IEEE Press, 2016:1-8.
[5] 张健, 张德虎. 高空长航时太阳能无人机总体设计要点分析[J]. 航空学报, 2016, 37(S1):1-7. ZHANG J, ZHANG D H. Essentials of configuration design of HALE solar-powered UAVs[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(S1):1-7(in Chinese).
[6] 甘文彪, 周洲, 许晓平. 仿生全翼式太阳能无人机气动数值模拟[J]. 航空学报, 2015, 36(10):3284-3294. GAN W B, ZHOU Z, XU X P. Aerodynamic numerical simulation of bionic full-wing typical solar-powered unmanned aerial vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2015,36(10):3284-3294(in Chinese).
[7] MEOLA D, IANNELLI L, GLIELMO L. Flight control system for small-size unmanned aerial vehicles:Design and software-in-the-loop validation[C]//201321st Mediterranean Conference on Control & Automation (MED).Piscataway, NJ:IEEE Press, 2013:357-362.
[8] 成鑫, 王和平, 张怡哲, 等. 小型无副翼电动无人机横航向特性研究[J]. 飞行力学, 2009, 27(4):74-77. CHENG X, WANG H P, ZHANG Y Z, et al. Electric and no aileron SUAV's lateral-direct dynamic characters[J]. Flight Dynamics, 2009, 27(4):74-77(in Chinese).
[9] 赵维娜, 孙诚骁, 周平方, 等. 多螺旋桨太阳能无人机航向控制分配方法[J]. 哈尔滨工程大学学报, 2015, 36(4):467-472. ZHAO W N, SUN C X, ZHOU P F, et al. Directional control allocation of a multi-propeller solar UAV[J]. Journal of Harbin Engineering University, 2015, 36(4):467-472(in Chinese).
[10] 徐明兴, 祝小平, 周洲, 等. 多螺旋桨太阳能无人机推力分配方法研究[J]. 西北工业大学学报, 2013, 31(4):505-510. XU M X, ZHU X P, ZHOU Z, et al. Exploring an effective method of thrust allocation for solar-powered UAV with multiple propellers[J]. Journal of Northwestern Polytechnical University, 2013, 31(4):505-510(in Chinese).
[11] 王睿, 祝小平, 周洲. 多螺旋桨太阳能无人机横航向操稳特性研究[J]. 飞行力学, 2012, 30(1):5-8. WANG R, ZHU X P, ZHOU Z. Research on lateral-directional flying qualities of multi-propeller solar powered UAV[J]. Flight Dynamics, 2012, 30(1):5-8(in Chinese).
[12] GAO Z Q. Active disturbance rejection control:A paradigm shift in feedback control system design[C]//IEEE American Control Conference. Piscataway, NJ:IEEE Press, 2006:7.
[13] 韩京清. 自抗扰控制器及其应用[J]. 控制与决策,1998, 13(1):19-23. HAN J Q. Active disturbance rejection controller and its applications[J]. Control and Decision, 1998, 13(1):19-23(in Chinese).
[14] BEARD R W, MCLAIN T W. Small unmanned aircraft:Theory and practice[M]. Princeton, NJ:Princeton University Press, 2012:52-92.
[15] 方振平, 陈万春, 张曙光. 航空飞行器飞行动力学[M].北京:北京航空航天大学出版社, 2005:325-375. FANG Z P, CHEN W C, ZHANG S G. Aircraft flight dynamics[M]. Beijing:Beihang University Press, 2005:325-375(in Chinese).
[16] 韩京清. 自抗扰控制技术[M]. 北京:国防工业出版社, 2008:316-331. HAN J Q. Active disturbance rejection control technique[M]. Beijing:Nation Defense Industry Press, 2008:316-331(in Chinese).
[17] 黄一, 韩京清. 非线性连续二阶扩张状态观测器的分析与设计[J]. 科学通报, 2000, 45(13):1373-1379. HUANG Y, HAN J Q. Analysis and design for the second order nonlinear continuous extended states observer[J]. Chinese Science Bulletin, 2000, 45(13):1373-1379(in Chinese).
[18] PARK S, DEYST J, HOW J P. A new nonlinear guidance logic for trajectory tracking[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston, VA:AIAA, 2004:16-19.
[19] 张波. 飞翼布局无人机全包线飞行控制技术研究[D]. 西安:西北工业大学, 2016:39-40. ZHANG B. Flight control for flying wing unmanned aerial vehicle within full envelope[D]. Xi'an:Northwestern Polytechnical University, 2016:39-40(in Chinese).
[20] HERBST G. Practical active disturbance rejection control:Bumpless transfer, rate limitation, and incremental algorithm[J]. IEEE Transactions on Industrial Electronics, 2016, 63(3):1754-1762.