Solid Mechanics and Vehicle Conceptual Design

Panel flutter of variable stiffness composite laminates in supersonic flow

  • OUYANG Xiaosui ,
  • LIU Yi
Expand
  • School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China

Received date: 2017-06-21

  Revised date: 2017-12-07

  Online published: 2017-12-07

Supported by

National Level Program

Abstract

Panel flutter behaviour of variable stiffness laminates in high supersonic flow is of great interest in design. The nonlinear flutter behaviour of variable stiffness composite laminates with curvilinear fibers in high supersonic flow is investigated, and effects of boundary condition and ply orientation are studied. The classical lamination theory along with the von-Karman large deflection strain-displacement relationship is used for structural modeling, and the linear piston theory is used for aerodynamic modeling. The aeroelastic model of panel flutter is established based on the principle of virtual work and the finite element method, which is then solved by Newmark method. The flutter behavior under different boundary conditions and ply orientation are obtained. The results show that the critical dynamic pressure decreases as the path orientations in the center and vertical edges of a plate (T0 or T1) increases, and the limit cycle amplitude increases as T0 or T1 increases under the same dynamic pressure. It also turns out that the designability of composite laminates can be improved by using curvilinear fibers, the flutter behaviour of variable stiffness composite laminates can be changed by varying the fiber orientation.

Cite this article

OUYANG Xiaosui , LIU Yi . Panel flutter of variable stiffness composite laminates in supersonic flow[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018 , 39(3) : 221539 -221539 . DOI: 10.7527/S1000-6893.2017.21539

References

[1] MILES J W. Dynamic chordwise stability at supersonic speeds:Report AL-1140[R]. Dundalk, MD:North American Aviation, Inc., 1950.
[2] JORDAN P F. The physical nature of panel flutter[J]. Aero Digest, 1956, 72(2):34-38.
[3] OLSON M D. Finite elements applied to panel flutter[J]. AIAA Journal, 1967, 5(12):2267-2270.
[4] OLSON M D. Some flutter solutions using finite elements[J]. AIAA Journal, 1970, 8(4):747-752.
[5] KOUCHAKZADEH M A, RASEKH M, HADDADPOUR H. Panel flutter analysis of general laminated composite plates[J]. Composite Structures, 2010, 92(12):2906-2915.
[6] ABDEL-MOTAGLAY K, CHEN R, MEI C. Nonlinear flutter of composite panels under yawed supersonic flow using finite elements[J]. AIAA Journal, 1999, 37(9):1025-1032.
[7] SINGHA M K, GANAPATHI M. A parametric study on supersonic flutter behavior of laminated composite skew flat panels[J]. Composite Structures, 2005, 69(1):55-63.
[8] 王晓庆, 韩景龙, 张军红. 不同气流偏角下的壁板热颤振分析及多目标优化设计[J]. 航空学报, 2010, 31(11):2195-2201. WANG X Q, HAN J L, ZHANG J H. Thermal flutter analysis of panel and multi-objective optimization design considering variation of flow yaw angle[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(11):2195-2201(in Chinese).
[9] 苑凯华, 邱志平. 含不确定参数的复合材料壁板热颤振分析[J]. 航空学报, 2010, 31(1):119-124. YUAN K H, QIU Z P. Thermal flutter analysis of composite panel with uncertain parameters[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(1):119-124(in Chinese).
[10] 苑凯华, 邱志平. 高超声速气流中复合材料壁板热颤振分析[J]. 南京航空航天大学学报, 2010, 42(3):313-317. YUAN K H, QIU Z P. Flutter analysis of composite panels in hypersonic flow with thermaleffects[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2010, 42(3):313-317(in Chinese).
[11] 杨智春, 谭光辉, 夏巍. 铺层方式对复合材料壁板热颤振特性的影响[J]. 宇航学报, 2008, 29(3):1047-1052. YANG Z C, TANG G H, XIA W. Thermal flutter analysis of composite panel with uncertain parameters[J]. Journal of Astronautics, 2008, 29(3):1047-1052(in Chinese).
[12] 高扬, 杨智春, 谷迎松. 气流偏角对不同形状复合材料壁板热颤振特性的影响[J]. 振动与冲击, 2014, 33(11):65-69. GAO Y, YANG Z C, GU Y S. Effects of flow yaw angle on thermal flutter characteristics of composite panels with differentshapes[J]. Journal of Vibration and Shock, 2014, 33(11):65-69(in Chinese).
[13] 吕秀秀, 李凤明, 宋智广. 超声速复合材料层合壁板结构的颤振特性分析[J]. 计算力学学报, 2013, 30(S1):140-143. LV X X, LI F M, SONG Z G. Flutter characteristic analysis of supersonic composite laminated panel[J]. Chinese Journal of Computational Mechanics, 2013, 30(S1):140-143(in Chinese).
[14] AKHAVAN H, RIBEIRO P. Natural modes of vibration of variable stiffness composite laminates with curvilinear fibers[J]. Composite Structures, 2011, 93(11):3040-3047.
[15] HYER M W, CHARETTE R F. Use of curvilinear fiber format in composite structure design[J]. AIAA Journal, 1991, 29(6):1011-1015.
[16] HYER M W, LEE H H. The use of curvilinear fiber format to improve buckling resistance of composite plates with central holes[J]. Composite Structures, 1991, 18(3):239-261.
[17] GÜRDAL Z, OLMEDO R. In-plane response of laminates with spatially varying fiber orientations:Variable stiffness concept[J]. AIAA Journal, 1993, 31(4):751-758.
[18] LOPES C S, CAMANHO P P, GÜRDAL Z, et al. Progressive failure analysis of tow-placed, variable-stiffness composite panels[J]. International Journal of Solids and Structures, 2007, 44(25-26):8493-8516.
[19] GÜRDAL Z, TATTING B F, WU C K. Variable-stiffness composite panels:Effects of stiffness variation on the in-plane and buckling response[J]. Composites:Part A, 2008, 39(5):911-922.
[20] LOPES C S, GÜRDAL Z, CAMANHO P P. Variable-stiffness composite panels:Buckling and first-ply failure improvements over straight-fiber laminates[J]. Computers and Structures, 2008, 86(9):897-907.
[21] WU Z, WEAVER P M, RAJU G, et al. Buckling analysis and optimisation of variable angle tow composite plates[J]. Thin-Walled Structures, 2012, 60(10):63-172.
[22] WU Z, RAJU G, WEAVER P M. Postbuckling analysis of variable angle tow composite plates[J]. International Journal of Solids and Structures, 2013, 50(10):1770-1780.
[23] 杜宇, 杨涛, 李志猛, 等. 纤维曲线铺放的变刚度复合材料层合板的失效分析[J]. 宇航材料工艺, 2013, 43(5):22-25. DU Y, YANG T, LI Z M, et al. Failure analysis of variable-stiffness composite laminates with curvilinear fiber placement[J]. Aerospace Materials & Technology, 2013, 43(5):22-25(in Chinese).
[24] STODIECK O, COOPER J E, WEAVER P M, et al. Improved aeroelastic tailoring using tow-steered composites[J]. Composite Structures, 2013, 106:703-715.
[25] STODIECK O, COOPER J E, WEAVER P M. Optimization of tow-steered composite wing laminates for aeroelastic tailoring[J]. AIAA Journal, 2015, 53(8):2203-2215.
[26] STODIECK O, COOPER J E, WEAVER P M. Aeroelastic tailoring of a representative wing box using tow-steered composites[J]. AIAA Journal, 2017, 55(4):1425-1439.
[27] HADDADPOUR H, ZAMANI Z. Curvilinear fiber optimization tools for aeroelastic design of composite wings[J]. Journal of Fluids and Structures, 2012, 33(5):180-190.
[28] STANFORD B K, JUTTE C V, WU K C. Aeroelastic benefits of tow steering for composite plates[J]. Composite Structures, 2014, 118:416-422.
[29] PIDAPARTI R M V, YANG H T Y.Supersonic flutter analysis of composite plates and shells[J]. AIAA Journal, 1993, 31(6):1109-1117.
[30] ZHOU R C, XUE D Y, MEI C. Finite element time domain-modal formulation for nonlinear flutter of composite panels[J]. AIAA Journal, 1994, 32(10):2044-2052.
Outlines

/