[1] LEVY D W, VASSBERG J C, WAHLS R A, et al. Summary of data from the First AIAA CFD Drag Prediction Workshop[J]. Journal of Aircraft, 2003, 40(5):875-882.
[2] LAFLIN K R, VASSBERG J C, WAHLS R A, et al. Summary of data from the Second AIAA CFD Drag Prediction Workshop[J]. Journal of Aircraft, 2005, 42(5):1165-1178.
[3] VASSBERG J C, TINOCO E N, MANI M, et al. Abridged summary of the Third AIAA CFD Drag Prediction Workshop[J]. Journal of Aircraft, 2008, 45(3):781-798.
[4] 闫超, 席柯, 袁武力, 等. DPW系列会议述评与思考[J]. 力学进展, 2011, 41(6):776-784. YAN C, XI K, YUAN W L, et al. Review of the drag prediction workshop series[J]. Advances in Mechanics, 2011, 41(6):776-784(in Chinese).
[5] VASSBERG J C, DEHAAN M A, RIVERS S M, et al. Development of a common research model for applied CFD validation studies:AIAA-2008-6919[R]. Reston, VA:AIAA, 2008.
[6] RIVERS M B, DITTBEMER A. Experimental investigation of the NASA common research model:AIAA-2010-4218[R]. Reston, VA:AIAA, 2010.
[7] RIVERS M B, DITTBEMER A. Experimental investigation of the NASA common research model in the NASA Langley transonic facility and NASA Ames 11-ft transonic wind tunnel:AIAA-2011-1126[R]. Reston,VA:AIAA, 2011.
[8] RIVERS M B, RUDNIK R, QUEST J. Comparison of the NASA common research model European transonic wind tunnel test data to NASA test data:AIAA-2015-1093[R]. Reston:AIAA,VA, 2015.
[9] UENO M, KOHZAI T, KOGA S, et al. 80% scaled NASA common research model wind tunnel test of JAXA at relatively low Reynolds number:AIAA-2013-0493[R]. Reston,VA:AIAA, 2013.
[10] CARTIERI A, HUE D, CHANZY Q, et al. Experimental investigations on the common research model at ONERA-S1MA-Comparison with DPW numerical results:AIAA-2017-0964[R]. Reston,VA:AIAA, 2017.
[11] VASSBERG J C, TINOCO E N, MANI M, et al. Summary of the Fourth AIAA CFD Drag Prediction Workshop:AIAA-2010-4547[R]. Reston,VA:AIAA, 2010.
[12] VASSBERG J C, TINOCO E N, MANI M, et al. Summary of the Fourth AIAA Computational Fluid Dynamics Drag Prediction Workshop[J]. Journal of Aircraft, 2014, 51(4):1070-1089.
[13] LEVY D W, LAFLIN K R, TINOCO E N, et al. Summary of data from the Fifth Computational Fluid Dynamics Drag Prediction Workshop:AIAA-2013-0046[R]. Reston,VA:AIAA, 2013.
[14] LEVY D W, LAFLIN K R, TINOCO E N, et al. Summary of data from the Fifth Computational Fluid Dynamics Drag Prediction Workshop[J]. Journal of Aircraft, 2014, 51(4):1194-1213.
[15] TINOCO E N, BRODERSEN O, KEYE S, et al. Summary of data from the Sixth AIAA CFD Drag Prediction Workshop:CRM case 2 to 5:AIAA-2017-1208[R]. Reston,VA:AIAA, 2017.
[16] KEYE S, MAVRIPLIS D. Summary of data from the Sixth AIAA CFD Drag Prediction Workshop:Case 5(coupled aero-structural simulation):AIAA-2017-1207[R]. Reston,VA:AIAA, 2017.
[17] RUMSEY C L, MORRISON J H, BIEDRON R T, et al. CFD variability for a civil transport aircraft near buffet-onset conditions:NASA/TM-2003-212149[R]. Washington, D.C.:NASA, 2003.
[18] SLOTNICK J, KHODADOUST A, ALONSO J, et al. CFD vision 2030 study:A path to revolutionary computational aerosciences:NASA/CR-2014-218178[R]. Washington, D.C.:NASA, 2014.
[19] VASSBERG J, DEHAAN M, SCLAFANI T. Grid generation requirements for accurate drag predictions based on OVERFLOW calculations:AIAA-2003-4124[R]. Reston, VA:AIAA, 2003.
[20] TINOCO E N, WINKLER C, MANI M, et al. Structured and unstructured solvers for the 3rd CFD Drag Prediction Workshop:AIAA-2007-0255[R]. Reston, VA:AIAA, 2007.
[21] MAVRIPLIS D J. Results from the 3rd Drag Prediction Workshop using the NSU3D unstructured mesh solver:AIAA-2007-0256[R]. Reston, VA:AIAA, 2007.
[22] SCLAFANI A J, VASSBERG J C, HARRISON N A, et al. Drag predictions for the DLR-F6 wing/body and DPW wings using CFL3D and OVERFLOW on an overset mesh:AIAA-2007-0257[R]. Reston, VA:AIAA, 2007.
[23] BRODERSEN O, EISFELD B, RADDATZ J, et al. DLR results from the Third AIAA CFD Drag Prediction Workshop:AIAA-2007-0259[R]. Reston, VA:AIAA, 2007.
[24] SCLAFANI A J, VASSBERG J C, RUMSEY C, et al. Drag prediction for the NASA CRM wing/body/tail using CFL3D and OVERFLOW on an overset Mesh:AIAA-2010-4219[R]. Reston, VA:AIAA, 2010.
[25] TEMMERMAN L, HIRSCH C. Simulations of the CRM configuration on unstructured hexahedral grids:Lessons learned from the DPW-4 Workshop:AIAA-2010-4670[R]. Reston, VA:AIAA, 2010.
[26] VASSBERG J C. A unified baseline grid about the common research model wing-body for the Fifth AIAA CFD Drag Prediction Workshop:AIAA-2011-3508[R]. Reston, VA:AIAA, 2011.
[27] MARTINEAU D, STOKES S, MUNDAY S, et al. Anisotropic hybrid mesh generation for industrial RANS applications:AIAA-2006-0534[R]. Reston, VA:AIAA, 2006.
[28] DENG X G, ZHANG H X. Developing high-order weighted compact nonlinear schemes[J]. Journal of Computational Physics, 2000, 165:24-44.
[29] DENG X G, MIN R B, MAO M L, et al. Further studies on geometric conservation law and application to high-order finite difference scheme with stationary grid[J]. Journal of Computational Physics, 2013, 239:90-111.
[30] 王运涛, 孙岩, 王光学, 等. 高阶精度方法下的湍流生成项对跨声速流动数值模拟的影响研究[J].空气动力学学报,2015, 33(1):25-30. WANG Y T, SUN Y, WANG G X, et al. Numerical study of the effect of turbulent production terms on the simulation of transonic flows with high-order numerical method[J]. Acta Aerodynamica Sinica, 2015, 33(1):25-30(in Chinese).
[31] 王运涛, 孙岩, 王光学, 等. 湍流模型离散精度对数值模拟影响的计算分析[J]. 航空学报, 2015, 36(5):1453-1459. WANG Y T, SUN Y, WANG G X, et al. Numerical study of the effect of turbulent production terms on the simulation of transonic flows with high-order numerical method[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(5):1453-1459(in Chinese)
[32] 王运涛, 孙岩, 李松, 等. 高阶精度方法下的湍流生成项对低速流动数值模拟的影响研究[J]. 空气动力学学报, 2015,33(3):325-329. WANG Y T, SUN Y, LI S, et al. Numerical analysis of the effect of turbulent production terms in low-speed numerical simulation[J]. Acta Aerodynamica Sinica, 2015,33(3):325-329(in Chinese)
[33] 王运涛, 孙岩, 王光学, 等. DLR-F6翼身组合体的高阶精度数值模拟[J]. 航空学报, 2015, 36(9):2923-2929. WANG Y T, SUN Y, WANG G X, et al. High-order numerical simulation of DLR-F6 wing-body configuration[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(9):2923-2929(in Chinese).
[34] 王光学, 张玉伦, 王运涛, 等. BLU-SGS方法在WCNS高阶精度格式上的数值分析[J]. 空气动力学学报, 2015, 33(6):733-739. WANG G X, ZHANG Y L, WANG Y T, et al. Numerical analysis of BLU_SGS method in WCNS high-order scheme[J]. Acta Aerodynamica Sinica, 2015, 33(6):733-739(in Chinese).
[35] 王运涛, 孟德虹, 孙岩, 等. DLR-F6/FX2B翼身组合体构型高阶精度数值模拟[J]. 航空学报, 2016, 37(2):484-490. WANG Y T, MENG D H, SUN Y, et al. High-order numerical simulation of DLR-F6/FX2B wing-body configuration[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(2):484-490(in Chinese).
[36] 王运涛, 孙岩, 孟德虹, 等. CRM翼/身/平尾组合体模型高阶精度数值模拟[J]. 航空学报, 2016, 37(12):3692-3697. WANG Y T, SUN Y, MENG D H, et al. High-order numerical simulation of CRM wing/body/horizontal tail model[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(12):3692-3697(in Chinese).
[37] 王运涛, 孙岩, 孟德虹, 等. CRM翼身组合体模型高阶精度数值模拟[J]. 航空学报, 2017, 38(3):120298. WANG Y T, SUN Y, MENG D H, et al. High-order numerical simulation of CRM wing-body model[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(3):120298(in Chinese).
[38] 王运涛, 孟德虹, 孙岩, 等. CRM-WB风洞模型高阶精度数值模拟[J]. 航空学报, 2018, 39(4):121642. WANG Y T, MENG D H, SUN Y, et al. High-order numerical simulation of CRM-WB wind tunnel model[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(4):121642(in Chinese).
[39] ROY C J, RUMSEY C, TINOCO E N. Summary of data from the Sixth AIAA CFD Drag Prediction Workshop:Case 1 code verification[R]. Reston,VA:AIAA, 2017.
[40] SPALART P R, ALLMARAS S R. A one-equation turbulence model for aerodynamic flows:AIAA-1992-0439[R]. Reston,VA:AIAA, 1992.
[41] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering application[J]. AIAA Journal, 1994, 32(8):1598-1605.
[42] ANTON P S, JOHNSON D J, BLOCK M, et al. Wind tunnle and propulsion test facilities:Supporting analyses toan assessment of NASA's capabilities to serve national needs:RAND_TR134[R]. California:RAND, 2004.
[43] SPALART P R. Strategies for turbulence modelling and simulations[J]. International Journal of Heat and Fluid Flow, 2000, 21:252-263.
[44] YAMAMOTO K, TANAKA K, MURAYAMA M. Effect of a nonlinear constitutive relation for turbulence modeling on predicting flow separation at wing-body juncture of transonic commercial aircraft:AIAA-2012-2895[R]. Reston,VA:AIAA, 2012.
[45] OBERKAMPF W L, TRUCANOB T G. Verification and validation in computational fluid dynamics[J]. Progress in Aerospace Sciences, 2002, 38:209-272.
[46] DAVID H U E. CFD investigation on the DPW-5 configuration with measured experimental wing twist using the elsA slover and the far-field approach:AIAA-2013-2508[R]. Reston,VA:AIAA, 2013.
[47] KEYE S, TOJITI V, EISFELD B, et al. Investigation of fluid-structure-coupling and turbulence model effects on the DLR results of the Fifth AIAA CFD Drag Prediction Workshop:AIAA-2013-2509[R]. Reston,VA:AIAA, 2013.
[48] KEYE S, BRODERSEN O, RIVERS M B, et al. Investigation of aeroelastic effects on the NASA common research model[J]. Journal of Aircraft, 2014, 51(4):1323-1330.
[49] MORRISON J H. Statistical analysis of the fifth drag prediction workshop computational fluid dynamics solutions[J]. Journal of Aircraft, 2014, 51(4):1214-1222.
[50] DERLAGA J M, MORRISONY J H. Statistical analysis of CFD solutions from the 6th AIAA CFD drag prediction workshop:AIAA-2017-1209[R]. Reston,VA:AIAA, 2017.
[51] RIVERS M B, HUNTER C A. Support system effects on the NASA common research model:AIAA-2012-0707[R]. Reston,VA:AIAA, 2012.
[52] RIVERS M B, HUNTER C A, CAMPBELL R L. Further investigation of the support system effects and wing twist on the NASA common research model:AIAA-2012-3209[R]. Reston,VA:AIAA, 2012.
[53] ZILLIAC G G, PULLIAM T H, RIVERS M B, et al. A comparison of the measured and computed skin friction distribution on the common research model:AIAA-2011-1129[R]. Reston,VA:AIAA, 2011.
[54] 王运涛, 孙岩, 孟德虹, 等. 包含支撑装置和机翼变形的CRM-WB模型气动特性数值模拟[J]. 航空学报, 2017, 38(12):121202. WANG Y T, SUN Y, MENG D H, et al. Numerical simulation of aerodynamic characteristics of CRM-WB model with support system and wing deformation[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(12):121202(in Chinese).
[55] 王运涛, 王光学, 张玉伦. 采用TRIP2.0软件计算DLR-F6构型的阻力[J]. 空气动力学学报, 2009, 27(1):108-111. WANG Y T, WANG G X, ZHANG Y L. Drag prediction of DLR-F6 configuration with TRIP2.0 software[J]. Acta Aerodynamica Sinica, 2009, 27(1):108-111(in Chinese).
[56] 王运涛, 王光学, 张玉伦. DPW Ⅲ机翼和翼身组合体构型数值模拟[J]. 空气动力学学报, 2011, 29(3):264-269. WANG Y T, WANG G X, ZHANG Y L. Numerical simulation of DPW Ⅲ wing and wing-body configurations[J]. Acta Aerodynamica Sinica, 2011, 29(3):264-269(in Chinese).
[57] OWENS L R, WAHLS R A, RIVERS S M. Off-design Reynolds number effects for a supersonic transport[J]. Journal of Aircraft, 2005, 42(6):1427-1441.
[58] KEYE S, RUDNIK R. Aero-elastic simulation of DLR's F6 transport aircraft configuration and comparison to experimental data:AIAA-2009-0580[R]. Reston, VA:AIAA, 2009.
[59] MOUTON S, SANT Y L, LYONNET M. Prediction of the aerodynamic effect of model deformation during transonic wind tunnel tests[J]. International Journal of Engineering Systems Modelling and Simulation, 2013, 5(1-3):44-56.
[60] HEEG J, CHWALOWSKI P, FLORANCE J P, et al. Overview of the aeroelastic predication workshop:AIAA-2013-0783[R]. Reston, VA:AIAA, 2013.
[61] LYU Z J, KENWAY G K W, MARTINS J R R A. RANS-based aerodynamic shape optimization investigations of the common research model wing:AIAA-2014-0567[R]. Reston, VA:AIAA, 2014.
[62] KENWAY G K W, MARTINS J R R A. Aerodynamic shape optimization of the CRM configuration including buffet-onset conditions:AIAA-2016-1294[R]. Reston, VA:AIAA, 2016.
[63] 陈颂, 白俊强, 史亚云, 等. 民用客机机翼/机身/平尾构型气动外形优化设计[J]. 航空学报, 2015, 36(10):3195-3207. CHEN S, BAI J Q, SHI Y Y, et al. Aerodynamic shape optimization design of civil jet wing-body-tail configuration[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(10):3195-3207(in Chinese).
[64] 刘峰博, 郝海兵, 李典, 等. 离散伴随方法在气动优化设计中的应用[J]. 航空计算技术, 2017, 42(2):33-40. LIU F B, HAO H B, LI D, et al. Application of discrete adjoint method in aerodynamic shape optimization design[J]. Aeronautical Computing Technique, 2017, 42(2):33-40(in Chinese).
[65] LIEM R P, KENWAY G K W, MARTINS J R R A. Multi-point, multi-mission, high-fidelity aerostructural optimization of a long-range aircraft configuration:AIAA-2012-5706[R]. Reston, VA:AIAA, 2012.
[66] GAETAN K W, KENWAY G K W, MARTINS J R R A. Multipoint high-fidelity aerostructural optimization of a transport aircraft configuration[J]. Journal of Aircraft, 2014, 51(1):144-160.